Otto von Guericke Universität Magdeburg Fakultät II – Mathematik und Naturwissenschaften Institut für Mathematik Jan Heiland

as of: May 9, 2016

Differential Algebraic Equations Exercise Sheet 1 – Linear DAEs with constant coefficients

A Regularity and Kronecker Forms

Check whether the matrix pairs

$\sqrt{1}$	1	0	[1	0	0]		$\sqrt{2}$	-1	1	[1	0	0]
(0	-1	1	, 0	1	-1)	and	(3	-2	2	, 0	1	-1)
\[0	0	0	0	-1	$1 \rfloor'$		`[0	0	0	[1	-1	$1 \rfloor'$

are regular or singular and determine their Kronecker canonical forms by elementary row and column transforms.

B Index-1 condition

Show that the matrix pair

$$(E,A) = \left(\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12}\\ A_{21} & A_{22} \end{bmatrix} \right)$$

with $E, A \in \mathbb{C}^{n,n}$, and r < n, is of index 1 if, and only if, A_{22} is square and nonsingular.

C Regularity and commutativity

Let $E, A \in \mathbb{C}^{n,n}$ satisfy EA = AE. Show

- 1. that (E, A) is regular if, and only if, kernel $E \cap \text{kernel } A = \{0\}$
- 2. and that ind(E, A) = ind E.

D Regularity and commutativity II

Let (E, A) be regular with $E, A \in \mathbb{C}^{n,n}$. For a $\tilde{\lambda}$ such that $\tilde{\lambda}E - A$ is invertible, show

- 1. that $\tilde{E} := (\tilde{\lambda}E A)^{-1}E$ and $\tilde{A} := (\tilde{\lambda}E A)^{-1}A$ commute
- 2. and that $\operatorname{ind}(E, A) = \operatorname{ind} \tilde{E}$.

E Drazin inverse as group inverse

If ind $E \leq 1$, then the Drazin inverse E^D is also called group inverse of E and denoted by $E^{\#}$. Show that $E \in \mathbb{C}^{n,n}$ is an element of a group $\mathbb{G} \subset \mathbb{C}^{n,n}$ with the matrix multiplication if and only if ind $E \leq 1$, and that the inverse in such a group is just $E^{\#}$. (Note: The question is whether E is a member of some group. I was wrong in the lecture. The Drazin inverse does not extend the group of regular matrices to matrices of index smaller or equal 1)

F Drazin inverse property

Prove that $((E^D)^D)^D = E^D$ for all $E \in \mathbb{C}^{n,n}$