Turnpike Property and Linear Systems Theory Revisited

Jan Heiland (MPI Magdeburg)

Guest Talk at USTB – 4 January 2024

Introduction

\[ \DeclareMathOperator{\inva}{d} \newcommand\mxp[1]{e^{\{#1\}}} \def\AP{A _ +} \def\bAP{\bar{A} _ +} \def\APs{A _ +^ * } \def\APms{A _ +^{- * }} \def\bAPms{\bar{A} _ +^{- * }} \def\PP{P _ +} \]

What is turnpike?

Let \(x\) solve an optimal control problem on a finite time horizon \([0,t_1]\). Then the turnpike property holds, if there is an \(x_s\) such that
for \(c\), \(\lambda >0\) independent of \(t_1\) and \(0\leq t \leq t_1\), \[ \| x(t) - x_s \| \leq c(\mxp{-t\lambda} + \mxp{-(t_1-t)\lambda}). \]

The Finite Time LQR Problem

For \(t_1>0\), \[\frac 12 \int_{0}^{t_1} \|Cx(s)-y_c\|^2+ \|u(s)\|^2 \inva{s} + \frac 12 \|F x(t_1)-y_e\|^2 \to \min_u\] subject to \[\dot x(t) = Ax(t) + Bu(t), \quad x(0)=x_0.\]

The Solution

Without conditions on \(A\), \(B\), \(C\), \(F\), the finite time problem is solved by

\[ \dot x = (A-BB^ * P(t))x - BB^ * w(t), \quad x(0)=x_0, \]

where \(P\) solves the differential Riccati equation \[ -\dot P = A^ * P + PA -PBB^ * P+C^ * C, \quad P(t _ 1)=F^ * F \] and the feedforward \(w\) solves \[ -\dot w = (A^ * -P(t)BB^ * )w + C^ * y _ c, \quad w(t _ 1)=-F^ * y _ e. \]

Theorem: Callier&Willems&Winkin’93

Let there exist a unique stabilizing solution \(P _ +\) to \[A^ * X+XA-XBB^ * X+C^ * C=0 .\]

  • If \(P(t) \to P _ +\) as \(t_1\to \infty\), then, for some \(\sigma>0\), \[\|x _ h(t) - \mxp{t(A-BB^ * P _ +)}x_0\| \leq Ce^{\{-(t_1-t)\sigma \}},\] where \(x _ h\) is the solution with \(y _ e\), \(y _ c=0\).

  • The solution to the differential Riccati equation \(P\) converges to \(P _ +\) as \(t_1\to \infty\) if, and only if, the nullspace of \(F^ * F\) and the undetectable subspace of \((C,A)\) have no intersection.

Explicit Formulas

For the affine LQR Problem

\[\frac 12 \int_{0}^{t_1} \|Cx(s)-y_c\|^2+ \|u(s)\|^2 \inva{s} + \frac 12 \|F x(t_1)-y_e\|^2 \to \min_u\]

with \(y_e\), \(y_c \neq 0\).

Assumptions

  • The ARE has a unique stabilizing solution \(P _ +\).

  • \(A _ + := A - BB^ * P _ +\).

Lemma

Let the ARE have a unique stabilizing solution \(P _ +\). Then the fundamental solution matrix \(U\) to \[ \dot U(t) = (A-BB^*P(t))U(t), \quad U(t_1)=I, \] where \(P\) solves the DRE with \(P(t_1)=F^ * F\), is given as \[ U(t) = \mxp{-(t_1-t)\AP}\bigl(I-[W-\mxp{(t_1-t)\AP}W\mxp{(t_1-t)\APs}](\PP-F^ * F)\bigr), \] where \(W:=\int_0^\infty \mxp{sA _ +}BB^ * \mxp{sA _ +^ * }\inva s\).

\[\square\]

Proof: See, e.g., Behr&Benner&H’19, proof of Theorem 3.4.

Lemma

The feedforward \(w\) that solves \[ -\dot w = (A^ * -P(t)BB^ * )w + C^ * y _ c, \quad w(t _ 1)=-F^ * y _ e. \] is given as \[ w(t) =-U(t)^{- * }U(t_1)^ * F^ * y _ e + \int_{t_1}^tU(t)^{-*}U(s)^*C^ * y _ c \inva s \] and can be expressed as \[ w(t) = w_h(t) + \APms C^ * y _ c - \mxp{(t_1-t)\APs}C^ * y _ c + g(t, t_1), \] where \(g\) collects all the remainder integral terms.

Lemma

The optimal state \(x\) is given as \[ x(t) = U(t)U(0)^{-1}x_0 - \int_0^t U(t)U(s)^{-1}BB^ * w(s)\inva s \] and, with the help of the formulas for \(w\) and \(U(t)U(s)^{-1}\), it can be expressed as \[ x(t) = x_h(t) + \AP ^{-1} BB^ * \APms C^ * y_c + G(t, t_1), \] with a function \(G\) that satisfies the estimate \[ \|G(t,t_1)\| \leq c\mxp{-(t_1 - t)\sigma}. \]

Theorem

Let the ARE have a unique stabilizing solution.
Then the affine finite time LQR problem enjoys the turnpike property, if, and only if, the nullspace of \(F^ * F\) and the undetectable subspace of \((C,A)\) have no intersection.

Remark

  • The turnpike is \(\AP ^{-1} BB^ * \APms C^ * y_c\), which is the solution to the steady state optimal control problem \[ \frac 12 \|Cx - y _ c\|^2 + \frac 12 \|u\|^2 \to \min_u, \quad \text{subject to}\quad 0=Ax+Bu. \]

Some Pictures

Case 1

\[ \begin{split} A &= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}\quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\\ C &= \begin{bmatrix} 0 & 2 \end{bmatrix} \\ &\to\text{ not detectable,} \\ &\to\text{ $P _ +$ exists,}\\ F &= C= \begin{bmatrix} 0 & 2 \end{bmatrix}\\ &\to\text{no turnpike!} \end{split} \]

Case 2

\[ \begin{split} A &= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}\quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\\ C &= \begin{bmatrix} 0 & 2 \end{bmatrix} \\ &\to\text{ not detectable,} \\ &\to\text{ $P _ +$ exists,}\\ F &\perp C = \begin{bmatrix} 2 & 0 \end{bmatrix}\\ &\to\text{turnpike!} \end{split} \]

Turnpike for DAEs

The Finite Time LQR Problem

\[ \def\daE{\mathcal E} \def\daA{\mathcal A} \def\daF{\mathcal F} \def\daC{\mathcal C} \def\daB{\mathcal B} \def\daP{\mathcal P} \def\daPP{\mathcal P _ +} \def\daPs{\mathcal P^ * } \def\daPD{\mathcal P _ \Delta} \def\daPDs{\mathcal P _ \Delta^ * } \def\daAP{\mathcal A _ +} \def\daAPs{\mathcal A _ +^ * } \def\ao{A _ {11}} \def\ato{A _ {21}} \def\aot{A _ {12}} \def\at{A _ {22}} \def\atmo{A _ {22}^{-1}} \def\atms{A _ {22}^{- * }} \def\boo{B _ {11}} \def\bto{B _ {21}} \def\btos{B _ {21}} \def\btt{B _ {22}} \def\daPDii{\ensuremath{P _ {\Delta;1}}} \]

For \(t_1>0\), \[\frac 12 \int_{0}^{t_1} \|\daC x(s)-y_c\|^2+ \|u(s)\|^2 \inva{s} + \frac 12 \|\daF x(t_1)-y_e\|^2 \to \min_u\] subject to \[\daE\dot x(t) = \daA x(t) + \daB u(t), \quad \daE x(0)=\daE x_0.\]

Question

What is the associated steady state problem? Certainly not simply \(0=\daA x + \daB u\).

Assumptions

  • The matrix pair \((\daE, \daA)\) is regular, i.e., there exists an \(s\in \mathbb C\) such that \(s\daE - \daA\) is invertible.

  • WLOG: the matrix \(\daE = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}\) is in semi-explicit form.

  • The generalized algebraic Riccati equation \[ \daA^*X + X^*\daA - X^*\daB\daB^*X + \daC^*\daC = 0, \quad \daE^*X=X^ * \daE \] has a stabilizing solution \(\daPP\).

Assumptions ctd

  • Here, stabilizing means that with \[\daA-\daB\daB^ * \daPP =:\daAP= \begin{bmatrix} \ao & \aot \\ \ato & \at \end{bmatrix},\]

  • the pencil \((\daE, \daAP)\) is finite dynamics stable and impulse free,

which means (because of \(\daE\) semi-explicit) that

  • \(\at\) is invertible and

  • \(\ao-\aot \at ^{-1} \ato\) is stable.

The Hamiltonian System

With \(\daPP\) at hand we can consider the Hamiltonian system \[ \begin{bmatrix} \daE & 0 \\ 0 & \daE^* \end{bmatrix} \frac{d}{dt} \begin{bmatrix} V_{11} \\ V_{12} \\ \tilde V_{21} \\ \tilde V_{22} \end{bmatrix}(t) = \begin{bmatrix} \daAP & -\daB\daB^* \\ 0 & -\daAP^* \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{12} \\ \tilde V_{21} \\ \tilde V_{22} \end{bmatrix}(t) \]

  • plus initial and terminal conditions,

  • with, e.g, \(V _ {11}(t)\in \mathbb R^{d\times d}\), where \(d\) is the rank of \(\daE\).

Theorem

Under reasonable compatibility assumptions on \(\daF\), the partial solution \(V _ {11}(t)\) is invertible, and with \[ \daPD(t):= \begin{bmatrix} \tilde V_{21}V_{11}^{-1} & 0 \\ -A_{22}^{-*}A_{12}^ * \tilde V_{21}V_{11}^{-1} & 0 \end{bmatrix}, \] the matrix function \(\daP(t) := \daPP + \daPD(t)\) solves the generalized differential Riccati equation \[ -\daE^*\dot \daP = \daA^*\daP + \daP^*\daA - \daP^*\daB\daB^*\daP + \daC^*\daC, \quad \daE^*\daP=\daP^*\daE. \]

Corollary

For \(y _ e\), \(y _ c=0\) and with \[x= \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \quad \text{and}\quad \daB\daB^ * = \begin{bmatrix} \boo & \bto^ * \\ \bto & \btt \end{bmatrix}\] partitioned in accordance with \(\daE\), the optimal state reads

\[ \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}= \begin{bmatrix} V_{11}(t)V_{11}(t_0)^{-1}x_1(t_0) \\ A_{22}^{-1} A_{21}x_1(t) - A_{22}^{-1} [B_{21}+B_{22}A_{22}^{-*}A_{12}^*]V_{21}(t)V_{11}(t)^{-1}x_1(t) \end{bmatrix}. \]

and the Callier/Willems/Winkin result for \(x_1\) is immediate.

Proof

  • The Hamiltonian system is j first order necessary condition.

  • Leaving aside the initial condtions, for any \(k\) constant, \[\begin{bmatrix} x_1(t) \\ x_2(t) \\ \tilde \lambda_1(t) \\ \tilde \lambda_2(t) \end{bmatrix} = \begin{bmatrix} V_{11}(t) \\ V_{12}(t) \\ \tilde V_{21}(t) \\ \tilde V_{22}(t) \end{bmatrix} k\] defines a solution.

  • With the invertibility of \(V _ {11}\), we can apply the initial condition: \[ k = V _ {11}(t_0)^{-1}x_0. \]

  • By the DAE stability, we have that \[ \begin{bmatrix} V_{12}(t) \\ \tilde V_{22}(t) \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} V_{11}(t) \\ \tilde V_{21}(t) \end{bmatrix} . \]

  • Computing the entries \(s_{11}\) and \(s_{12}\), we obtain \[ \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}= \begin{bmatrix} V_{11}V_{11}(t_0)^{-1}x_1(t_0) \\ A_{22}^{-1} A_{21}x_1 - A_{22}^{-1} [B_{21}+B_{22}A_{22}^{-*}A_{12}^*]V_{21}V_{11}^{-1}x_1 \end{bmatrix}. \]

\[\square\]

What is the DAE Turnpike then?

For a general \(y _ c\), it turns out that \[ x_1(t) \to \bAP ^{-1} \bar B\bar B^ * \bAPms \bar C^ * y_c \quad\text{as}\quad t_1 \to \infty, \] where \[ \bAP:= \ao-\aot\atmo\ato, \quad \bar B:=B_1-\aot\atmo B_2, \quad \] \[ \bar C:=C_1-C_2\atmo\ato. \]

The DAE turnpike is defined via the Schur complement of the closed-loop “index-1” system.

Conclusion

Summary

  • Turnpike for a large class of LQR Problems can be derived from classical systems theory results

  • and also extends to DAEs.

Outlook

  • A DAE example?

  • Formulation for infinite-dimensional systems.

  • Make use of higher convergence rates when treating nonlinear problems.

Thank You!

  • For your attention.

  • And thanks to Enrique Zuazua and the ERC DyCon Project for the support.

References

Behr, M., P. Benner, and J. Heiland. 2019. “Solution Formulas for Differential Sylvester and Lyapunov Equations.” Calcolo 56 (4): 1–51. https://doi.org/10.1007/s10092-019-0348-x.
F. M. Callier, J. Winkin, and J. L. Willems. 1994. “Convergence of the Time-Invariant Riccati Differential Equation and LQ-Problem: Mechanisms of Attraction.” International Journal of Control 59 (4): 983–1000. https://doi.org/10.1080/00207179408923113.
Heiland, J., and E. Zuazua. 2021. “Classical System Theory Revisited for Turnpike in Standard State Space Systems and Impulse Controllable Descriptor Systems.” SIAM J. Control Optim. 59 (5): 3600–3624. https://doi.org/10.1137/20M1356105.