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u
←→ $

In mathematical terms :

∂v

∂t
− f (v , p, u) = 0

g(v) = 0

←→ J (v , p, u)→ min
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∂v
∂t − f (v , p, u) = 0

g(v) = 0
formulated in time and space

Approximate the state via a finite dimensional linear system[
M 0
0 0

]
d

dt

[
v
p

]
−
[
D(t) JT2
J1 0

] [
v
p

]
−
[
B1(t)

0

]
u = 0, v(0) = v0

with

M ∈ Rn1,n1 invertible

J1M
−1JT2 ∈ Rn2,n2 invertible (→ index 2)
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J (v , p, u)→ min

and the cost functional via a quadratic form

J (v , p, u) =

1

2

{[
v(T )
p(T )

]T [
V1v(T )
V2p(T )

]
+

∫ T

0

[
v
p

]T [
W1v
W2p

]
+ uTRu dt

}

with

V1,V2,W1,W2 symmetric positive semidefinite (spsd)

R spd
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Given the optimal control problem

v(T )TV1v(T ) +

∫ T

0

vTW1v + uTRu dt → min

s.t.

[
M 0
0 0

]
d

dt

[
v
p

]
−
[
D JT1
J2 0

] [
v
p

]
−
[
B
0

]
u = 0, v(0) = v0.

Assume M and J2M
−1JT1 are invertible, J2v

0 = 0,
W1,V1 spsd, J1M

−TV1 = 0 and R spd.

Then any optimal u is given by the feedback law u = R−1BTXMv ,
where X ∈ Rn1,n1 is the symmetric solution to

MT ẊM + DTXM + MTXD + MTXRBXM−
−W1 + JT2 YM + MTY T J2 = 0

J1XM = 0

MTX (T )M = −V1.
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Kunkel, Mehrmann, several papers on optimal control for
DAEs (e.g. 1997, 2008)

Kurina, März: Feedback Solutions of Optimal Control
Problems with DAE Constraints (2007)

Backes: Optimale Steuerung der linearen DAE im Fall Index 2
(2006)

Bänsch, Benner: Stabilization of Incompressible Flow by
Riccati-based Feedback (2010)
based on theoretical work by J.P. Raymond
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vT (T )V1v(T ) +
∫ T

0
vTW1v + uTRu dt

The optimality system is given by the Euler-Lagrange equations

[
M 0
0 0

]
d

dt

[
v
p

]
−
[
D JT1
J2 0

] [
v
p

]
−
[
B
0

]
u =0,

v(0) = v0,[
MT 0

0 0

]
d

dt

[
λ1
λ2

]
+

[
DT JT2
J1 0

] [
λ1
λ2

]
−
[
W1 0
0 0

] [
v
p

]
=0,

MTλ1(T ) = −V1v(T ),

and

−BTλ1 + Ru = 0.
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[
M 0
0 0

]
d
dt

[
v
p

]
−
[
D JT1
J2 0

] [
v
p

]
−
[
B
0

]
u = 0 (DAE)[

MT 0
0 0

]
d
dt

[
λ1
λ2

]
+

[
DT JT2
J1 0

] [
λ1
λ2

]
−
[
W1 0
0 0

] [
v
p

]
= 0 (adDAE)

−BTλ1 + Ru = 0

If (DAE) and (adDAE) are such that u̇ and v̇ do not appear in the
solution of (DAE) and (adDAE), respectively, then

u∗ is optimal⇔


there is (v∗, p∗, λ∗1, λ

∗
2, u

∗)

that satisfies the

Euler-Lagrange equations.

cf. Backes (2006)
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This means, that if we find a solution (v , p, λ1, λ2) of the reduced
optimality system[

M 0
0 0

]
d

dt

[
v
p

]
−
[
D JT1
J2 0

] [
v
p

]
−
[
BR−1BT 0

0 0

] [
λ1
λ2

]
= 0[

MT 0
0 0

]
d

dt

[
λ1
λ2

]
+

[
DT JT2
J1 0

] [
λ1
λ2

]
−
[
W1 0
0 0

] [
v
p

]
= 0,

v(0) = v0 and MTλ1(T ) = −V1v(T )

then u = R−1BTλ1 is an optimal input.

We make the ansatz:[
λ1
λ2

]
=

[
X Y T

Y 0

] [
M 0
0 0

] [
v
p

]
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[
λ1
λ2

]
=

[
X Y T

Y 0

] [
M 0
0 0

] [
v
p

]
Then[
MT 0

0 0

] [
λ̇1
λ̇2

]
=

[
MTX MTY T

0 0

] [
M 0
0 0

] [
v̇
ṗ

]
+

[
MT ẊM 0

0 0

] [
v
p

]
or, having employed (DAE) and (adDAE),
MT ẊM + DTXM + MTXD + MTXRBXM−

−W1 + JT2 YM + MTY T J2 MTXJT1

J1XM 0

 = 0,

MTX (T )M = −V1.
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Assume M = I to write in short:

Ẋ + DTX + XD + XRBX −W1 + JT2 Y + Y T J2 = 0 (∗)
J1X = 0 and XJT1 = 0

We use the projector P := I − JT2 (J1J
T
2 )−1J1, with

J1P = 0 and PJT2 = 0.

With this we obtain for X = [P + [I − P]] X [[I − PT ] + PT ]

J1X = 0 and XJT1 = 0 ⇒ X = PXPT

PXPT is uniquely defined by the standard differential Riccati
equation obtained from P → (∗)← PT
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Ẋ + DTX + XD + XRBX −W1 + JT2 Y + Y T J2 = 0 (∗)
J1X = 0 and XJT1 = 0

[I − P]→ (∗)← PT uniquely defines YPT

[I − P]→ (∗)← [I − PT ] leads to

[I − P]Y T J2 + JT2 Y [I − PT ] = [I − P]W1[I − PT ],

which defines Y [I − PT ] up to an additive component ZJ2.

Thus the considered differential algebraic matrix Riccati equation
has a solution and the proposed decoupling gives the feedback-law
for the optimal input.

Jan Heiland PDAE Constraint Optimal Control



Introduction
Derivation and Analysis of the Riccati DAE

Summary, Outlook and Discussion

What has been presented

Linear time-varying DAEs as a basic model for optimal control
of PDAEs

For semi-explicit DAEs of index 2 the Euler-Lagrange give
sufficient conditions

Riccati-Ansatz leads to a feedback solution for the optimal
control

Upcoming

Similar results for the ∞-dimensional system

Numerical solution strategies for the Riccati DAEs

Application to nonlinear problems
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