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Abstract— The stabilization or set point control of incom-
pressible laminar flows has been under vivid investigation since
long. All linearization based approaches suffer from the con-
ceptual shortcoming of a possibly small domain of attraction.
In order to get the system into the regime where, e.g., Riccati-
based feedback stabilization works, nonlinear control laws are
necessary. Therefore, we propose a scheme that continuously
updates an initial feedback, that guarantees decay of solutions
under locally checkable conditions, and that can be realized
through solving large-scale linear equations.

I. INTRODUCTION

In the last decade, stabilization of incompressible flows
on the base of stationary Riccati-based feedback has been
investigated in theory [17], [18] and in numerical simulations
[1], [2], [7], [12]. In view of applications, the Riccati-based
approach, however, has the conceptual shortcoming that it
assumes the flow in the vicinity of the target state at starting
time. Since the target is an unstable steady state, this initial
condition is unlikely to be fulfilled in practice. Thus, it is
necessary to first transfer the system from a possible into a
desired state before Riccati-based feedback stabilization can
be applied; cf. [4].

To force the system into the desired state, a corresponding
control that solves the set point control problem has to be
found and applied. With the practical realization in mind,
we limit our considerations to closed-loop approaches that
will provide the control in feedback form, leaving aside all
work on open-loop control of flows. In view of generality,
we focus on universal approaches and only mention the
alternatives that base on heuristic low-order models as in
[15] here. Similarly, we will leave aside the recent result
on global feedback stabilization of Navier–Stokes equations
[16] since it bases on eigenfunctions which may be infeasible
to compute.

The most common nonlinear feedback set point control
methods for flow equations base on solving local optimiza-
tion problems. The instantaneous control algorithm [9], [13]
computes a control from a local prediction of the system
evolution. Receding horizon or Model Predictive Control
(MPC) approaches as used in [6] use larger prediction
horizons. Other approaches resort to approximate solutions
of HJB equations; cf. [14].

Instantaneous control for the Navier–Stokes equations
(NSE) has been shown capable [13] to drive a system to a set
point, if the initial deviation is small. The MPC formulations
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have not been analysed for the NSE in particular. General
results [11] on the stabilization through MPC, assume suf-
ficiently large control horizons or suitably chosen terminal
conditions for the local optimization.

In this paper, we propose the adaptation of a recently
developed [5] update scheme to semi-discrete NSE. This
scheme provides continuous updates of an initial Riccati-
based feedback-gain which can guarantee exponential decay
of the trajectory of an autonomous nonlinear system.

The paper is organized as follows. In Section II, we
shortly revisit the proposed scheme. In Section III, we
extend the theory to the incompressible NSE and, in view
of numerical implementations, reformulate the Sylvester and
Riccati equations that define the gain updates as a matrix
valued saddle-point problem. In Section IV, we expand on
how the matrix equations could be solved. We conclude with
a general discussion on the expectations and limitations of
the approach.

II. NONLINEAR FEEDBACK VIA CONTINUOUS UPDATES

We consider an autonomous nonlinear system with affine
inputs

ζ̇(t) = f(ζ(t)) +Bu(t), ζ(0) = z0 ∈ Rn, (1)

with a function f and a matrix B of appropriate dimensions.
The task is to find an input u, with u(t) ∈ Rk, that forces
the system (1) into a set point z∗ ∈ Rn, i.e. a system state
z∗ for which f(z∗) = 0. Under mild assumptions, cf. [5],
this task can be accomplished by finding u as an input that
drives the solution trajectory of the system

ξ̇(t) = A(ξ(t))ξ(t) +Bu(t), ξ(0) = x0 (2)

to zero, where the matrix-valued function A : Rn → Rn,n is
defined in terms of f and where x0 := z0 − z∗. System (2)
is called a state dependent coefficient (SDC) system or an
extended linearization.

Let X0 ⊂ Rn be a bounded set that contains the origin
and for T > 0, let

Ξ[0,T ] :=
{
ξ : ξ solves (2) with u = 0 and x0 ∈ X0

}
(3)

the set that contains all solution trajectories starting in X0

and

X[0,T ] :=
{
ξ(t) : ξ ∈ Ξ[0,T ] and 0 ≤ t ≤ T

}
(4)

the set of all assumed values.
Theorem 1 ([5], Thm. 3.3 and Lem. 3.4): Consider (2)

with u = 0 and a smoothly differentiable norm. Let



X0 ∈ Rn and let T > 0 be such that X[0,T ] is bounded. Let
A be smoothly differentiable on X[0,T ] and let there exist
constants K, ω > 0 such that

‖esA(x)‖ ≤ Ke−ωs for all x ∈ X[0,T ] and s > 0.

Let

mt := inf
ρ∈R≥0

sup
ξ∈Ξ[0,T ]

∫ t
0
e−ω(t−s)‖A(ξ(s))−A(ξ(ρ))‖‖ξ(s)‖ ds∫ t

0
e−ω(t−s)|s− ρ|‖ξ(s)‖ ds

.

If there exists a t∗, 0 ≤ t∗ ≤ T , such that

−ω∗ :=
lnK

t∗
+
√
Kmt∗ ln 2− ω (5)

is negative, then all solutions to (2), that start in X0, decay
to zero exponentially.

From the theorem and in particular from (5) it follows, that
the decay of solutions can be guaranteed, if the coefficient
matrix A(ξ(s)) is uniformly stable over a sufficiently long
time interval with a decay rate ω strong enough to damp
out transient effects (that basically define the constant K).
Accordingly, stabilization of (2) can be achieved by a feed-
back law u = −F (x)x that would make the SDC matrix
Ã(x) = A(x)−BF (x) of the closed-loop system

ξ̇(t) =
(
A(ξ(t))−BF (ξ(t))

)
ξ(t) (6)

sufficiently uniformly stable in the sense of Theorem 1.
The following theorem defines a continuous update that

keeps the stability constants of an initial Riccati-based feed-
back in a predefined margin.

Theorem 2 ([5], Thm. 4.2, Lem. 4.4): For given x0 ∈ Rn
let
(
A(x0), B

)
from (2) be stabilizable in the sense of

a linear system. For given R ∈ Rk,k symmetric positive
definite and Q ∈ Rn,n symmetric positive semi-definite, let
F0 = R−1BTP (x0) where P (x0) is the unique stabilizing
solution of

PA(x0) +A(x0)TP − PBR−1BTP +Q = 0 (7)

and let K, ω be the stability constants of the closed loop
matrix, i.e.

‖es(A(x0)−BF0)‖ ≤ Ke−ωs, s > 0.

If for an A∆ ∈ Rn,n, there exists R∆ ∈ Rk,k such that(
A(x0) +A∆

)
E − E

(
A(x0)−BF0

)
= −A∆ +BR∆B

TP (x0) (8)

has a solution E with ‖E‖ < 1, then the updated feedback
gain

F∆ := (R−1 +R∆)BTP (I + E)−1 (9)

stabilizes A(x0) +A∆ and

‖es(A(x0)+A∆−BF∆)‖ ≤ K̃e−ωs, s > 0,

with K̃ = 1+‖E‖
1−‖E‖K.

Proof: If P is a solution to the Riccati equation (7)
then it fulfills the relation[

A(x0) −BR−1BT

−Q −A(x0)T

] [
I
P

]
=

[
I
P

]
(A−BF0).

For a change in the system A(x0)← A(x0)+A∆ and chosen
updates in the weighing matrices R−1 ← R−1 + R∆ and
Q← Q+Q∆, we consider the perturbed relation[
A(x0) +A∆ −B(R−1 +R∆)BT

−Q+Q∆ −A(x0)T

] [
I + E
P

]
=[

I + E
P

]
(A−BF0). (10)

If there exists a matrix E with ‖E‖ < 1 such that (10) holds,
then a multiplication of the first block equation of (10) by
(I + E)−1 from the right gives

A(x0) +A∆ −B(R−1 +R∆)BTP (I + E)−1 =

(I + E)(A−BF0)(I + E)−1,

or

A(x0) +A∆ −BF∆ = (I + E)(A−BF0)(I + E)−1,

which leads us to the conclusion that the updated closed-
loop matrix has the same eigenvalues as the initial closed-
loop matrix and, thus, is stable with the same decay rate ω.
The estimate on the bound K̃ on the transient behavior is
obtained by considering (I + E)−1 as a Neumann series,
which by ‖E‖ < 1 converges with ‖(I + E)−1‖ < 1

1−‖E‖ .
Furthermore, we note that if such an E exists, then the
second block row equation of (10) uniquely defines Q∆ such
that, in fact, one only has to consider the first block row of
(10), i.e., after a rearrangement of the terms, equation (8).

�
Remark 3: As defined in Theorem 2, the constant K̃ is

unbounded. If one enforces ‖E‖ ≤ c < 1 for a threshold
value c, then K̃ ≤ 1+c

1−c is bounded.
For nonlinear feedback design for (2), Theorem 2 can be

applied with A∆ = A(ξ(t))−A(x0) at every time instance t,
to define a gain via (9) that keeps the closed loop uniformly
stable for some time. The applicability and efficiency of this
design has been demonstrated for a PDE, namely the Chafee
Infantee equation and an ODE that models a chemical reactor
in [5].

III. GAIN UPDATES FOR NAVIER–STOKES EQUATIONS

In this section, we extend the theory towards set point
control of spatially discretized NSE

Mv̇(t) = N(v(t))v(t) + Lv(t) +GTp(t) +Bu(t),

v(0) = v0, (11a)
0 = Gv(t), (11b)

with M ∈ Rn,n, L ∈ Rn,n, G ∈ Rm,n, n > m, and
N : Rn → Rn,n linear, that models the evolution of the
velocity v and pressure p in an incompressible flow. We
focus on the differential-algebraic structure of (11). For
considerations on the approximation of the dynamics of
flows with Finite Elements, we refer to [10]. Concerning the
numerical realization of boundary control in (11), we refer
to [3].



Let v∗ be a set point of (11), i.e. there exists a p∗ such
that

0 = N(v∗)v∗ + Lv∗ +GTp∗,

0 = Gv∗.

We define vδ := v− v∗ and pδ = p− p∗ and consider the
difference system

Mv̇δ(t) = A(vδ(t))vδ(t) +GTpδ(t) +Bu(t),

v(0) = vδ0 := v0 − v∗, (12a)
0 = Gvδ(t), (12b)

where A(vδ) := N(vδ) +N(v∗) +N∗(v∗) + L ∈ Rn,n and
N∗ is defined via N∗(v∗)vδ = N(vδ)v

∗. For what follows,
we make the assumption that M is symmetric strictly positive
definite and that G has full rank. In this case, we can define
the projector Π := I −M−1GT(GM−1GT)−1G with the
properties that

GΠ = 0, ΠTM = MΠ, and ΠM−1 = M−1ΠT.
(13)

Then, one can show [12] that vδ is the velocity part of the
solution to (12) if and only if vδ solves

Mv̇δ(t) = ΠTA(vδ(t))Πvδ(t) + ΠTBu(t), v(0) = vδ0,
(14)

provided that Gvδ0 = 0. In particular, if Gvδ0 = 0, then any
solution to (14) fulfills Gvδ ≡ 0, i.e.

vδ(t) = Πvδ(t), t ≥ 0. (15)

We now formulate the nonlinear feedback update scheme
as it follows from Theorem 2 for the projected Navier–Stokes
equations. In a second step, we derive a formulation of the
matrix equations that avoids the projector Π and the matrix
inverse and, thus, is more suitable for numerical approaches.

Having premultiplied equation (14) by M−1, it follows
directly from (7) and (8), that for suitable R and Q, a
uniformly stabilizing feedback for (14) can be obtained
through an initial feedback gain F0 = R−1BTΠM−1P0,
where P0 is a stabilizing solution to

PM−1ΠTA0Π + ΠTAT
0 ΠM−1P−

PM−1ΠTBR−1BTΠM−1P +Q = 0, (16)

and a continuous update

F (t) := R−1BTΠM−1P0(I + E(t))−1 (17)

defined through a solution E(t) to

M−1ΠT
(
A0 +A∆(t)

)
ΠE−

EM−1ΠT
(
A0Π−BF0

)
= −M−1ΠTA∆(t)Π, (18)

where A∆(t) := A(vδ(t)) − A0) and A0 := A(vδ0) and
with R∆ = 0. Thus, if M−1ΠT

(
A(vδ0) − BF0

)
is stable

with constants K and ω, then

‖esM
−1ΠT

(
A(vδ(t))−BF (t)

)
Π‖ ≤ K̃e−ωs, s > 0

with K̃ = 1+c
1−cK as long as (18) has a solution with

‖E(t)‖ < c < 1. Note that stability is to be considered

only with respect to trajectories that evolve in the range of
Π; cf. (15).

The following results characterize the feedback defining
matrix equations and propose a reformulation which does
not call on the projector or on the matrix inverse.

Lemma 4: Consider the definition (17) of the feedback
law for the projected equation (14).

1) If (M−1ΠTA0,M
−1ΠTB) is stabilizable, then the

initial feedback can be defined via F0 = R−1BTX0M ,
where X0 is a stabilizing solution to

AT
0XM +MXA0 −MXBR−1BTXM+

MYG+GTY TM = −Q,
(19a)

GXM = 0, and MXGT = 0, (19b)

for a suitable Y ∈ Rn,m.
2) The updated gains can be obtained as

F (t) := R−1BTXM(I + Z(t)M)−1,

where Z(t) is a solution to(
A0 +A∆

)
ZM −MZ(A0 −BF0)+

MY1G+GTY T
2 M = −A∆,

(20a)

GZM = 0, and MZGT = 0, (20b)

with ‖ZM‖ < 1 and for suitable Y1, Y2 ∈ Rn,m,
provided that such a solution triple (Z, Y1, Y2) exists.

Proof: ad 1.: We first note that if P0 defines a
feedback for (14) via u(t) = −R−1BTΠM−1P0vδ(t), then
the projected part ΠTP0Π defines the same feedback. In fact,
by the properties (13) of Π, by Π = Π2, and by (15) it
follows that

R−1BTΠM−1P0vδ(t) = R−1BTΠM−1ΠTP0Πvδ(t).

Next, we show that the relevant part P0, namely ΠTP0Π,
can be obtained as ΠTP0Π = MX0M , where X0 is the
stabilizing solution to (19). Here, we call X0 stabilizing if it
is a stabilizing solution to

ΠTAT
0 ΠXMΠ + ΠTMXΠTA0Π

−ΠTMBR−1BTXMΠ = −ΠTQΠ (21)

which is unique by assumption.
A direct comparison of (16), multiplied by ΠT and Π from

the left and the right, respectively, and (21) gives that their
unique solutions indeed relate like ΠTP0Π = MX0M . In
order to employ the unprojected system for the definition of
ΠTP0Π, we need to show that this X0 defines a solution to
(19). Since X0 = M−1ΠTP0ΠM−1 = ΠM−1P0M

−1ΠT,
we conclude that X0 = ΠX0ΠT and that X0 readily fulfills
the constraints (19b). If we plug ΠX0ΠT into (19a) and use
that ΠX0ΠT solves (21), we are left with

(I −ΠT)AT
0X0M +MX0A0(I −Π)

+MYG+GTY TM = Q−ΠTQΠ
(22)



and the task to find a Y that solves this remainder equation.
We make the ansatz Y = ΠY + (I − Π)Y := Y0 + YG and
project the remainder equation (22) onto several subspaces
to compute Y0 and YG seperately. If we apply I −ΠT from
the left and Π from the right to (22), we obtain

(I −ΠT)A0X0M +GTY0M = −(I −ΠT)QΠ (23)

which uniquely defines Y0M and, thus, Y0, since GT has full
column rank and since I − ΠT maps into the range of GT.
Applying ΠT from the left and I − Π from the right, gives
the transpose of (23) which is redundant in this symmetric
case.

If we apply I − ΠT from the left and I − Π from the
right and recall that (I−Π) = M−1GT(GM−1GT)−1G we
obtain the equation

MYGG+GTY TGM = (I −ΠT)Q(I −ΠT)

that has the general solution

YG =
1

2
M−1(I−ΠT)QM−1GT(GM−1GT)−1+M−1GTS,

(24)
where S is an arbitrary skew-symmetric matrix of suitable
size; see [8].

Thus, the solutions defined in (24), (23), and (21) con-
stitute a solution to (19) such that the part X0 realizes the
initial feedback as

R−1BTM−1ΠTP0Πvδ(t) = R−1BTX0Mvδ(t).

ad 2.: We show that if Z, together with suitable Y1, Y2,
solves (20) and ‖ZM‖ < 1, then EZ := ZM solves (18).
By (20b) it follows that Z = ΠZΠT and EZ = ΠEZΠ.
If one replaces ZM by ΠEZΠ in (20a), one finds that EZ
solves(
A0 +A∆

)
ΠEZΠ−MΠEZΠM−1(A0 −BF0)+

MY1G+GTY T
2 M = −A∆.

Having multiplied this equation by M−1ΠT and Π from the
left and the right, respectively, one obtains that EZ solves

M−1ΠT
(
A0 +A∆

)
ΠEZΠ−

ΠEZΠM−1(A0 −BF0)Π = −M−1ΠTA∆Π,

which is equivalent to (18) since, in particular, with P0 =
ΠTP0Π, it holds that F0Π = F0 and, by construction, it
holds that EZΠ = EZ . �

Lemma 4 provides constituting equations for the feedback
that, because they are formulated in the original coefficients
of (11), seem favorable for numerical approaches. Nonethe-
less, the solutions to them might not be unique or might
not exist. In the following remarks, we address some issues
concerning practical application.

Remark 5:
1) If Q = ΠTQΠ, then every solution X to (19) defines

a solution P = MXM to (16).
2) If defined through a solution to the constrained equa-

tions (19), the irrelevant part P0 − ΠTP0Π of P0 is

zero. Accordingly, a stabilizing solution is uniquely
defined through (19), which might not be the case for
solutions to (16).

3) In this sense, also the solution to (20) is less am-
biguous if compared to the solution of (18). In fact,
with P0 = ΠTP0Π, only the part ΠEΠ is relevant
for the feedback. This can be seen with the formula(
I + E

)−1
=
∑∞
i=1(−E)i, which is valid for E with

‖E‖ < 1, and the arguments used in part 1. of the
proof of Lemma 4:

P0

(
I + E

)−1
vδ(t) = ΠTP0Π

∞∑
i=1

(−E)iΠvδ(t)

= ΠTP0Π
(
I + ΠEΠ

)−1
vδ(t).

4) Nevertheless, the existence of solutions to (20) is
similarly unclear as for (8); cf. the discussion in [5].

IV. ON THE NUMERICAL REALIZATION OF THE
FEEDBACK UPDATES

In order to realize the nonlinear feedback in a simulation,
one first has to solve a projected or constrained Riccati
equation (16) or (19) and then, in every time step, the
projected or constrained Sylvester equation (18) or (20). If
Q is of low-rank, as it typically is the case, one can call on
efficient low-rank iteration solvers, cf., e.g., [1] and [12, Ch.
9.], for the numerical solution of the Riccati equation. The
Sylvester equations for the updates, however, do not have
a low-rank structure. Although it is a linear equation with
sparse and, in the case of a small number of inputs, low-rank
coefficients, a direct solution is not feasible, since its solution
will generically be a dense N by N matrix, where N is the
dimension of the state-space. And in the interesting case of
unstable flows, the state-space dimension N is of order 105.
Moreover, the right-hand side A∆ is unstructured.

Thus, for the realization of this nonlinear feedback ap-
proach, one first needs a memory efficient approach to large-
scale unstructured Sylvester equations. Possible approaches
may base on sparse best-approximations as they are used in
compressed sensing.

V. CONCLUSION

We have proposed a nonlinear feedback design approach
for semi-discrete incompressible Navier–Stokes equations.
The approach comes with sufficient conditions for stability
of the nonlinear closed-loop system, that can be locally
estimated and cast into an algorithm for numerical real-
ization. Another theoretical advantage of the approach is
its generality and that only requires the solution of linear
systems. For this purpose, we have shown that the feedback is
equivalently defined through matrix equations in the original
coefficients such that, e.g., structure and sparsity are pre-
served. However, in its current form, the algorithm requires
the solution of large-scale unstructured Sylvester equations,
for which there are no efficient algorithms. Thus, the next
step towards implementation would be the development
of a memory efficient solver for large-scale unstructured
Sylvester equations.
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