7 Examples

7.1 Semi-discrete Navier-Stokes equations

7.1.1 Transformation to a more handy form

By scalings and state transforms, we find that the coefficients of the spatially discretized Navier-Stokes equations \[\begin{align*} \{\lambda \mathcal E - \mathcal A\} &= \left\{\lambda \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} A & B^H \\ B & 0 \end{bmatrix} \right\} \\ & \backsim \begin{bmatrix} M^{-1/2} & 0 \\ 0 & I \end{bmatrix} \left\{\lambda \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} A & B^H \\ B & 0 \end{bmatrix} \right\} \begin{bmatrix} M^{-1/2} & 0 \\ 0 & I \end{bmatrix} \\ & \backsim \begin{bmatrix} Q^H & 0 \\ 0 & I \end{bmatrix} \left\{\lambda \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} M^{-1/2}AM^{-1/2} & M^{-1/2}B^H \\ B M^{-1/2} & 0 \end{bmatrix} \right\} \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix} \\ & \backsim \begin{bmatrix} I & 0 \\ 0 & R^{-H} \end{bmatrix} \left\{ \lambda \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} M^{-1/2}AM^{-1/2} & \begin{bmatrix} R \\ 0 \end{bmatrix} \\ \begin{bmatrix}R^H & 0\end{bmatrix} & 0 \end{bmatrix} \right \} \begin{bmatrix} I & 0 \\ 0 & R^{-1} \end{bmatrix} \\ & \quad = \left\{\lambda \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix} - \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix} \right\}. \end{align*}\] where we have used a QR-decomposition: \[M^{-1/2}B^H=Q\begin{bmatrix}R \\ 0\end{bmatrix}\] with unitary \(Q\) and invertible \(R\) in the third step.

7.1.2 Local Characteristic Values

Next we derive the local characteristic as in Theorem 4.1.

We compute the subspaces as defined in (4.5):

Matrix as the basis of/computed as
\(T=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}\) \(\operatorname{kernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}\)
\(Z=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}\) \(\operatorname{corange}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}\)
\(T'=\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix}\) \(\operatorname{cokernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}\)
\(Z^HAT=0_{n_1}\) \(\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}\)
\(V=I_{n_1}\) \(\operatorname{corange}(Z^HAT) = \operatorname{kernel}0_{n_1}^H\phantom{\begin{bmatrix} 0 \\ I_1 \end{bmatrix}}\)
\(Z^HAT'=\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix}\) \(\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix}\)

and derive the quantities as defined in (4.6):

Name Value Derived from
rank \(r=n_1+n_2\) \(\operatorname{rank}E = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}\)
algebraic part \(a=0\) \(\operatorname{rank}Z^HAT = \operatorname{rank}0_{n_1}\)
strangeness \(s=n_1\) \(\operatorname{rank}V^HZ^HAT' = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix}\)
differential part \(d=n_2\) \(d=r-s=(n_1 + n_2) - n_1\)
undetermined variables \(u=n_1\) \(u=n-r-a=(n_1+n_2+n_1)-(n_1+n_2)-0\)
vanishing equations \(v=0\) \(v=m-r-a-s=(n_1+n_2+n_1)-(n_1+n_2)-n_1\)

7.1.3 Derivative Array and the Condensed Form

Since the differentiation index of (7.1) is \(\nu=1\), we anticipate for the strangeness index that \(\mu=1\) and consider the derivative array of order \(\ell =1\):

\[\begin{equation} \left ( \mathcal M_1 , \mathcal N_1 \right ) = \left ( \begin{bmatrix} M & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ A & B^H & M & 0\\ B & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} A & B^H& 0 & 0\\ B & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \right ) , \quad g_1 = \begin{bmatrix} f_1 \\ f_2 \\ \dot f_1 \\ \dot f_2 \end{bmatrix}. \end{equation}\]