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@ ssrems o conrroL e Raguced Order Modelling in Frequency Domain

= Model Order Reduction (MOR) is used to transform large, complex models of time-dependent
processes into smaller, simpler models that are still capable of representing accurately the behavior of
the original process.
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= Model Order Reduction (MOR) is used to transform large, complex models of time-dependent
processes into smaller, simpler models that are still capable of representing accurately the behavior of
the original process.

m Data-driven reduced-order modeling (DD-ROM) and learning methods have become more and more
appealing and sought after over the years.

Jan Heiland heiland@mpi-magdeburg.mpg.de Implicit/Explicit Moment Matching


mailto:heiland@mpi-magdeburg.mpg.de

@ sersmocomaeon  Reduced Order Modelling in Frequency Domain

= Model Order Reduction (MOR) is used to transform large, complex models of time-dependent
processes into smaller, simpler models that are still capable of representing accurately the behavior of

the original process.

m Data-driven reduced-order modeling (DD-ROM) and learning methods have become more and more
appealing and sought after over the years.

m At MPI Magdeburg, we study and develop different DD-ROM + learning methods:
— Operator Inference (Oplinf), Loewner Framework, AAA, DMD, or QuadBT
— Typical learning methods (with ANNs: LQResNet, CNNs, RNNs), SINDy, ...
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@ sersmocomaeon  Reduced Order Modelling in Frequency Domain

Frequency responses and error

Magnitude (dB)

—original
~ Reduced (r-20)
== Approximation error

10?

10
Frequency

m In electronics or control systems engineering, the frequency domain refers to the analysis of mathematical functions
or signals with respect to frequency.

m A frequency response describes the steady-state response of a system to sinusoidal inputs of varying frequencies ~~
can be measured in practice (VNAs, EIS, etc.).
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@ st socomio o Reduced Order Modelling in Frequency Domain

Magnitude (dB)

m In electronics or control systems engineering, the frequency domain refers to the analysis of mathematical functions
or signals with respect to frequency.

m A frequency response describes the steady-state response of a system to sinusoidal inputs of varying frequencies ~~
can be measured in practice (VNAs, EIS, etc.).

m By applying the (unilateral) Laplace transform to the system of ODEs/DAEs:

L [Ex(1)] = £ [Ax(r)] + £ [Bu(r)], {sm(s) — X0 = AX(s) + Bi(s),
LIy(8)] = £ [Cx(1)] + £ [Du(r)] , §(s) = Cx(s) + Di(s).
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Magnitude (dB)

In electronics or control systems engineering, the frequency domain refers to the analysis of mathematical functions
or signals with respect to frequency.

A frequency response describes the steady-state response of a system to sinusoidal inputs of varying frequencies ~~
can be measured in practice (VNAs, EIS, etc.).

By applying the (unilateral) Laplace transform to the system of ODEs/DAEs:

L [Ex(1)] = £ [Ax(r)] + £ [Bu(r)], {sm(s) — X0 = AX(s) + Bi(s),
LIy(8)] = £ [Cx(1)] + £ [Du(r)] , §(s) = Cx(s) + Di(s).

By solving the algebraic equation above in terms x(s), assuming xo = 0, we get that:

§(s) = [C(sE—A)—‘B+D] i(s). )

the transfer function H(s)
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m What if we don’t have direct access to the model (only frequency response data is provided)?
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§@i?s“”éﬁé‘iﬁ’?‘é%mf?féc”w Data-driven ROM (Frequency Domain)

m What if we don’t have direct access to the model (only frequency response data is provided)?

m Use available measurements and apply data-driven approaches:
1. Vector fitting - [Gustavsen/Semlyen '99]; [Drmac/Gugercin/Beattie '15];
2. The RKFIT algorithm - [Berljafa/Guttel '17] (RK toolbox);
3. The AAA algorithm - [Nakatsukasa/Sete/Trefethen 18] (Chebfun toolbox);
4. The Loewner framework - [Mayo/Antoulas '07]; [Antoulas/Lefteriu/lonita "17] . ..
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m What if we don’t have direct access to the model (only frequency response data is provided)?
m Use available measurements and apply data-driven approaches:

1. Vector fitting - [Gustavsen/Semlyen '99]; [Drmac/Gugercin/Beattie '15];
2. The RKFIT algorithm - [Berljafa/Guttel '17] (RK toolbox);

3. The AAA algorithm - [Nakatsukasa/Sete/Trefethen 18] (Chebfun toolbox);
4. The Loewner framework - [Mayo/Antoulas '07]; [Antoulas/Lefteriu/lonita "17] . ..

Data-driven ROM (Frequency Domain)

m Use data samples to construct an approximated fitting model:

1. Given by matrices E, A, B, C and TF: H(s) = C(sE — A)~'B.

d Wik
2. Given in barycentric representation: H(s) = Zicoig

Yo e
3. Given in pole-residue representation: H(s) = ny + Zzzl fﬁék.
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@ seas s won  Rational Interpolation and the Loewner Matrix

m Lagrange basis for the linear space of polynomials of degree at most n.
Given \, € C,i=1,--- ,n+1: N # N, i #J,
qi(s) =Ty (s = Ap), i=1,--- ,n+1,
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5 @ semwsmeconrmoL o Ratjonal Interpolation and the Loewner Matrix
m Lagrange basis for the linear space of polynomials of degree at most n.
Given \, € C,i=1,--- ,n+1: N # N, i #J,
qi(s) =Ty (s = Ap), i=1,--- ,n+1,

m The barycentric Lagrange interpolation for a rational function g(s) satisfying the (right) interpolation conditions for

any 1 <i<n+1

g\) =z,
is given by:
— 5 — )\ L
g(s) = i=1 _ Z, 1 qi(s) .
% Wi 2oiwidi(s)
i=1 57 Ai
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m Lagrange basis for the linear space of polynomials of degree at most n.
Given \, € C,i=1,--- ,n+ 11 N £ N, i £,
qi(s) =Ty (s = Ap), i=1,-- ,n+1,

m The barycentric Lagrange interpolation for a rational function g(s) satisfying the (right) interpolation conditions for

any 1 <i<n+1

g\) =z,
is given by:
— 5 — )\ L
g(s) = i=1 _ Z, 1 qi(s) .
% Wi 2oiwidi(s)
prit R

m The free parameters (weights) w; are found so that additional interpolation conditions hold:
glw) =vj, j=1,--,r,
where (1, v;), with 11; # ), are given.
J. P. Berrut and N. Trefethen, Barycentric Lagrange Interpolation, SIAM Review, 2004.
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m For these extra conditions to be satisfied, one needs to enforce ILe¢ = 0, where

vVi—% MiE!
1= AL 1= Ang1 w1
L= : . ; et o= : e crtl,
Vr—Z| L Vr—Zp41 Wpt-1
Hr—Al Hr—Ant1 i

m Here, L is a Loewner matrix (from Charles Loewner) with:
left (row) array (;1;,v;), j=1,...,r, and right (column) array (\;,z), i=1,...,n+ 1.
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@ seassocon o Rational Interpolation and the Loewner Matrix

m For these extra conditions to be satisfied, one needs to enforce ILe¢ = 0, where

vVi—% MiE!
1= AL 1= Ang1 wi
L= : - ; et o= : e crtl,
Vr—Z| L Vr—Zp41 Wpt-1
Hr—Al Hr—Ant1 i

m Here, L is a Loewner matrix (from Charles Loewner) with:
left (row) array (;1;,v;), j=1,...,r, and right (column) array (\;,z), i=1,...,n+ 1.

Main property

LetL be a p x k Loewner matrix. Then the following holds:

p,k >deg(g) = rankL = deg(g).

Consequently, every square Loewner matrix of size deg (g), is non-singular.

A.C. Antoulas and B.D.O. Anderson, On the scalar rational interpolation problem, IMA Journal of Mathematical Control and Information, 3: 61-88, 1986.
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m Letf(s) = (s> +4)/(s + 1) be a rational function of complexity n := deg (f) = 2.
m By evaluating (s) on A = [1,3,5] and u = [2,4, 6, 8], one obtains z = [5/2,13/4,29/6] and v = [8/3,4,40/7,68/9].
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m Letf(s) = (s> +4)/(s + 1) be a rational function of complexity 7 := deg (f) = 2.
m By evaluating (s) on A = [1,3,5] and u = [2,4, 6, 8], one obtains z = [5/2,13/4,29/6] and v = [8/3,4,40/7,68/9].
m Then, we construct the Loewner matrix, its null space (rank(IL) = 2), and a rational function interpolating the data as,

11 B
cor R 3 5 13 29
1 3 5 3 —

Lol 2 3 & e | 1 (5) = D 36 S

=1 9 23 3 =1 -3 | 8= [ S

4 B8 @ 1 3G-1)  3(-3) " 55
B3 W
18 36 54

m In this case, g(s) perfectly recovers the original function f(s), i.e., g(s) = £(s).
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Let f(s) = (s> +4)/(s + 1) be a rational function of complexity n := deg (f) = 2.
By evaluating (s) on A = [1,3,5] and . = [2,4,6, 8], one obtains z = [5/2,13/4,29/6] and v = [8/3,4,40/7,68/9].
m Then, we construct the Loewner matrix, its null space (rank(IL) = 2), and a rational function interpolating the data as,

1B
cor R 3 5 13 2
L3 s 3 _

Lol 2 3 & e | 1 (5) = D 36 + 569

- 9 23 37 L ) »8lS) = 1 _ _ 4 4 :

4 ® @ ] 36-1  3(—3) " 5-3
13 31 49
8 3% 5

In this case, g(s) perfectly recovers the original function f(s), i.e., g(s) = f(s).
A matrix-format realization can be obtained as H(s) = W& (s)~'G, where

s—1 3—s5 0
W=[0 0] -1],
B(s)=| s—1 5—s | and

—1

W
wis O
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COMPUTATIONAL METHODS IN
@ SYSTEMS AND CONTROL THEORY' The algorithm -a summary

m The AAA algorithm was introduced in
[Nakatsukasa/Sete/Trefethen '18] .

m |t stands for "Adaptive Antoulas-Anderson” in
honor of the authors who introduced this type of
interpolation scheme in the 80s.

e A.C. Antoulas and B.D.O. Anderson,
On the scalar rational interpolation problem,
IMA Journal of Mathematical Control and
Information, 3: 61-88, 1986.

The main steps of the AAA algorithm are:

1. Write down rational approximants in a
"barycentric” representation.

2. Select the interpolation points ("support points”)
via a Greedy scheme.

3. Compute the other variables ("weights”) to enforce
least squares approximation.

~ The block-AAA algorithm was developed in [Gosea/Giittel
21];

~ The set-valued AAA algorithm was proposed in [Lietaert
etal. '22] ;

~» The AA approach was extended to the DAE case (in-
dex 2/ relative degree 1) [Gosea/H. '24] — this talk ;

~» Ongoing work for extending AAA to generic DAE
cases (index-aware approach) [Pradovera/Gosea/H. '24] — up-
coming ;
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m We saw that for the toy example:
f(s) = (s +4)/(s + 1)
the standard AA method works well (completely recovers the function).
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m We saw that for the toy example:
f(s) = (s +4)/(s + 1)
the standard AA method works well (completely recovers the function).
m Also, this function has a polynomial part of degree n = 1 (meaning that f(s) = O(s) for |s| — c0)
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m We saw that for the toy example:
f(s) = (s +4)/(s + 1)
the standard AA method works well (completely recovers the function).
m Also, this function has a polynomial part of degree n = 1 (meaning that f(s) = O(s) for |s| — c0)
m Nonetheless, in practical (more complex) examples, the classical methods fail to accurately reproduce

the behavior at high frequencies:
Oseen-Example: Frequency response

5| |= Full model |
107 [l—-- Plain Loewner(r=18) /:_
o poly-Loewner(r=18) RN
N R poly-AA § // =4
= o
= e
P
o
100F - ]
“/ il L 1l
107 1072 10° 102 104 108
Frequency

Figure: A typical frequency response plot for systems with polynomial parts...
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m In [Gosea/H. '24] the classical barycentric form is modified to account for the case of higher-index DAEs,
i.e., with index v = 2, as simple as:

m The free parameters (weights) w; + the coefficient ¢ can be also found as before, i.e., so that
additional interpolation conditions hold:

g(l/bj):Vj,j:L"' s I
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m In [Gosea/H. '24] the classical barycentric form is modified to account for the case of higher-index DAEs,

i.e., with index v = 2, as simple as:

m The free parameters (weights) w; + the coefficient ¢ can be also found as before, i.e., so that
additional interpolation conditions hold:

8w) =vj, j=1,-,r
m To do so, we need to solve the following equation:
Le=0,
where the augmented Loewner matrix is written as:

L=[L -1, and ¢= m .

Jan Heiland heiland@mpi-magdeburg.mpg.de


mailto:heiland@mpi-magdeburg.mpg.de

]
COMPUTATIONAL METHODS IN
SYSTEMS AND CONTROL THEORY

m We consider the flow past a cylinder in 2 dimensions
m at Reynolds number 20 calculated with the averaged inflow velocity and the cylinder

diameter as reference quantities;
m see [Gosea/H. '24] adapted from [Ahmad et al. "17] .

v Magnitude

Snapshot of magnitude of the steady-state NS velocity solution in the considered setup.

Implicit/Explicit Moment Matching
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m The considered flow problem with boundary control is modeled by a finite element discretization of the
incompressible Oseen equations.

m The Oseen equations are obtained from the Navier-Stokes equations by a Newton linearization about a
steady state solution.

m The control v(z, x) distributed over the boundary, is modeled as v(t, x) = g(x)u(r) through a function
g: I' = R? that describes the spatial extension.

m Overall, the spatially-discretized model for the velocity v and pressure p reads

M M) [.”(f)} —[A A {”(’)] +J7p(0),

vr(2) vr (1)

0=1[J Jr] L}VF((?)] , 0=vr(f) — bru(t), )

y(#) = Cow(1) + Gop(1).
m The transfer function when considering the y, output only, with C, = [0 C,], is:

Hos(s) := Cp(s€ — A) ' (B + sBy). (3)
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We compare with the classical (plain) Loewner framework (LF) [Mayo/Antoulas '07] , and with the post

processing LF method in [Antoulas/Gosea/Heinkenschloss '20] .
Oseen-Example: Frequency response

5 | |= Full model
107 .. Plain Loewner(r=18)
o poly-Loewner(r=18) “See
mg ..... poly-AA R
10°0r 1
10° 102 10* 108

107 1072
Frequency
Oseen-Example: Relative approximation error
: : : —
-~ Plain Loewner(r=18)
— - poly-Loewner(r=18)
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m Proposed a variant of Loewner-based system identification with free parameters in
the Antoulas-Anderson algorithm

m that implicitly covers polynomial parts of the transfer function, avoiding the need for
high-frequency data points.

m Drawback: Reduced error control on coefficients, leading to larger approximation
errors at high frequencies.

m Future work: adaptive algorithms, like the adaptive Antoulas-Anderson approach.

m Ongoing work: extending the approach to higher polynomial terms and automatic
detection of the polynomial degree.

Thank you! psst... PhD wanted — Ehe s
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