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Verteilte Kontrolle von
ortsdiskretisierten Oseen
Gleichungen
Diese Diplomarbeit behandelt ein Verfahren zur mathematischen Modellierung
von Strömungsbeeinflussung.
In vielen Anwendungsbereichen, wie z.B. in der Aerodynamik von Fahrzeu-

gen, ist aktive Strömungsbeeinflussung oder -kontrolle von Bedeutung. Aktuelle
Forschungen liefern gute Ergebnisse, vgl. [71], diese aber vor allem in praktis-
chen oder numerischen Experimenten. Im Allgemeinen sind die Untersuchungen
und Experimente sehr komplex und aufwändig, was nicht zuletzt an der sehr
rechenintensiven Modellierung von Strömungen liegt.
Ein wesentlicher Beitrag der Mathematik zur Behandlung von Strömungsbee-

influssung liegt in der Entwicklung und Analyse von Methoden zur Modellre-
duktion (MOR). Ein Überblick zu (MOR) Ansätzen findet man z.B. in [3].
Ein allgemeines Modell zur Strömungskontrolle besteht zunächst aus einem

Modell für die betrachtete Strömung. In den meisten Fällen wird dafür die
Navier-Stokes Gleichung zur Beschreibung des Geschwindigkeits- und des Druck-
feldes eines inkompressiblen Fluids in einer gegeben Umgebung und einem festen
Zeitabschnitt verwendet, vgl. [49]. Zur Modellierung der beeinflussenden Größen
wird das Modell um einen Term zur Beschreibung der verteilten Kontrolle u aus
einem Inputraum U erweitert. Verteilte Kontrolle bedeutet hierbei, dass die
Kontrollfunktion als stetig im Raum verteilt definiert ist, was insbesondere die
Betrachtung von punktweiser und Kontrolle über den Rand ausschließt.
Das Systemverhalten wird über den Output y ∈ Y verfolgt, der mittels eines

Operators aus dem Druck- und Geschwindigkeitsfeld erzeugt wird. Abbildung
(Figure) 1.1 zeigt ein zweidimensionales Beispiel.
Die hier vorgeschlagene Reduktion des allgemeinen Modells, basiert auf den

Untersuchungen von Schmidt [92] und verwendet die Oseen-Linearisierung der
Navier-Stokes Gleichungen zur Strömungsmodellierung und endlichdimensionale
Kontroll- und Beobachtungsräume U und Y. In Kombination wird so die Verwen-
dung einer endlichdimensionalen linearen i/o map, welche die Kontrolle direkt
auf den Output abbildet, ermöglicht. Dieser Ansatz ist motiviert durch zwei
Beobachtungen. Einerseits geschieht aktive Strömungskontrolle oft lokal im Ort
und in der Zeit, weshalb der Linearisierungsfehler klein gehalten werden kann.
Zweitens haben komplexe Systeme oft ein relativ einfaches Input/Output Ver-
halten, das auch mit endlich dimensionalen Ein- und Ausgaben gut angenähert
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werden kann.
Das übergeordnete Ziel ist es, eine kompakte mathematische Formulierung

zu entwickeln, die eine effiziente Realisierung in numerischen Simulationen von
Strömungsbeeinflussung ermöglicht. Dazu werden in jedem Kapitel dieser Diplo-
marbeit beide Grundkonzepte, d.h. die lineare Oseen Gleichung und die diskrete
Kontrolle dergleichen mittels einer i/o map untersucht.
Zunächst werden in Kapitel 2 Zugrundeliegende Gleichungen und Kon-

zepte die beitragenden Gleichungen und der mathematische Rahmen zur Be-
handlung derselbigen vorgestellt. Als Basis für die Modellierung der Strömung
werden verschiedene Typen von Oseen Gleichungen und deren schwache For-
mulierung, zusammen mit Aussagen zur Existenz und Eindeutigkeit von ver-
allgemeinerten Lösungen, angegeben. Desweiteren werden die grundlegenden
Ideen und Formeln zur mathematischen Formulierung von Strömungsbeeinflus-
sung angesprochen und die notwendigen Konzepte zur Formulierung und Be-
handlung von diskreten i/o maps bereitgestellt.
Kapitel 3 Kontrolle der ortsdiskretisierten Oseen Gleichungen mit-

tels i/o maps bringt beide Konzepte in einer expliziten Formel zusammen.
Dazu werden zunächst die Oseen Gleichungen im Ort diskretisiert und als ein
System von differentiell algebraischen Gleichungen interpretiert. Damit kann
eine explizite Formel für die Lösung der semidiskretisierten Oseen Gleichung
angegeben werden, die durch einen zusätzlichen Term zu einer Lösungsformel
des kontrollierten Systems erweitert wird. Eine weitere Umformulierung ergibt
dann eine explizite Darstellung für die i/o map. Formuliert man diese Abbildung
für diskrete Räume, kann eine Matrixdarstellung hergeleitet werden.
Kapitel 4 Fehleranalyse der Oseen i/o map enthält Abschätzungen für

den Fehler, der durch die Verwendung der endlichdimensionalen Darstellung
der i/o map verursacht wird. Außerdem werden die weiteren Fehlerquellen,
die Ortsdiskretisierung und die numerische Integration der kontrollierten Oseen
Gleichungen angesprochen.
Kapitel 5 Numerische Behandlung der Zustandsgleichungen befasst

sich mit der Umsetzung des mathematischen Modells auf dem Computer. Zur
Realisierung der Ortsdiskretisierung wird für ein 2D Modellproblem die Q1P0
methode, eine finite Elemente Methode, welche die Geschwindigkeit stückweise
bilinear und den Druck stückweise konstant annähert, vorgestellt. Im zweiten
Teil wird eine Adaption des Projection2 Algorithmus für die Q1P0 diskretisierte
Oseen Gleichung angegeben.
Kapitel 6 Numerische Tests enthält die Implementierung und Ergebnisse

von im Rahmen der Arbeit untersuchten Testproblemen. Dafür wurde die
Kontrolle einer 2D Strömung in einer Kavität mittels der Oseen Gleichung
modelliert. Insbesondere wurde eine konkrete i/o map für mittels Wavelets
diskretisierte In- und Outputräume berechnet und dazu verwendet, ein vorgege-
benes Ströumgsbild mit Hilfe von Kontrolle zu erreichen.
Das abschließende Kapitel beinhaltet zusammenfassende Bemerkungen und

einen Ausblick auf sich anschließende Untersuchungen.
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1 Introduction

1.1 Motivation
When in the 1950s the first signs of the progress that computers were about
to bring to applied mathematics appeared, Jonathan von Neumann predicted:
“The computer will enable us to divide the atmosphere at any moment into
stable regions and unstable regions. Stable regions we can predict. Unstable
regions we can control.”, as cited by [25, p. 219]. At least with the estimation
that this is only a matter of a decade von Neumann was wrong. Up to now the
research concerned with the control of flows, ranging from large scale problems
as e.g. the control of the weather to macro scale applications as the active flow
control by means of piezoelectrical devices, see e.g. [73], is of high relevance,
with great potential for real life application, as e.g. for aeronautics, see [37, 48].
Recent developments come up with good results for real life applications,

see e.g. [69], in particular for experimental or numerical investigations. The
mathematical analytical treatment of problems referring to flow control is still
at an early stage. This may be due to the fact, that as stated e.g. in [10] the
mathematical analysis of flow control unites essential and non-trivial parts of
the complex fields fluid-dynamics, Navier-Stokes mathematics, control theory,
numerical analysis and optimization.
In view of flow control many mathematical research directions are trying to

close the gap in practical relevance between best practice heuristic methods and
a purely mathematical approach, with e.g. guaranteed robustness and conver-
gence rates. Basically, these are connected to the mathematical modeling of
the control-systems, the analysis of system-theoretic properties as well as the
development of performant methods for the practical realization, as e.g. linear
algebra tools, goal oriented discretizations, problem specific codes and model
reduction.
This work aims at the distributed control of a physical system governed by the

Navier-Stokes equations for variable time t ∈ [0, T ], as illustrated schematically
in Figure 1.1. The physical system is perturbed by an input u belonging to an
input space U . The effect of this manipulation is observed via sensors measuring
physical quantities and thus generating the output y ∈ Y of the system for the
given control.
Distributed means that the considered control u(t) applied to the system is

distributed in space, i.e. u(t) = u(t;σ) with a space variable σ varying smoothly
distributed in a subdomain of the considered flow domain. This excludes the
application to control acting pointwise or at the boundary.
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1 Introduction

Figure 1.1: Schematic illustration of a 2D flow system perturbed by an input
u and observed via sensors extracting the output y from the actual
state

On the way to enable an effective control or optimization of the system, i.e.
finding means or models for a mathematically understood and numerically af-
fordable method to perturb a flow so that a certain state of the flow is achieved,
basically two concepts are put together. First the nonlinear semidiscretized
Navier-Stokes equations are linearized, giving the Oseen approximation of the
considered flow equations. The use of the Oseen equations means a modifica-
tion of the considered state system. Then the model of the control design is
reduced by discretizing the admitted inputs and the outputs. Both, the linear
state space system and the discrete input and output spaces enable the use of a
discrete linear input/output (i/o) operator, mapping the input u directly onto
the system output y.
This joint approach is motivated by the observation, that control often acts

locally in time, and therefore a linearization promises still a good approxima-
tion. Secondly, the matrix representation of a discrete linear i/o map enables an
effective control of the system.
The practical relevance, which is actually the control of the Navier-Stokes

system, may be maintained by coupling the control of the Oseen to the control
of the Navier-Stokes equations via an iteration as illustrated in Figure 1.2. Thus,
it can be ensured that the Oseen approximation is sufficiently close to the Navier-
Stokes equations system for the actual state.
This work, dealing with distributed control of the semidiscretized Oseen equa-

tions, contributes to the presented work flow in Figure 1.2 in view of finding the
optimal control ū∗n for the Oseen approximation.
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1.1 Motivation
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Figure 1.2: Scheme for optimal control of the Navier-Stokes equations via an
iterative coupling to the Oseen linearization. First for a control un
the state vn of the system, governed by the Navier-Stokes equations,
is computed. If the output CT vn does not match the target output
y∗, the Oseen linearization about vn of the Navier-Stokes equations
is used to compute the approximated optimal control ū∗n of the Oseen
system with respect to the adapted target state ȳ∗. This is done in
an inner iteration over k. Then ū∗n serves as the basis for an improved
un in the next step of the outer iteration over n.
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1 Introduction

1.2 Overview of the Topic
The basis of the investigation is a mathematical model of the flow control de-
sign. In general a partial differential equation (Navier-Stokes, Oseen or Stokes)
model of the physical flow system is taken and extended by model parame-
ters representing actuators and sensors, as described e.g. in the monographs
[9, 8]. The validity of the model may be sensitive with respect to the model
parameters. Considering for example a control design on the basis of the in-
compressible Navier-Stokes equations, a perturbation in the continuity equation
may necessitate a change to a model which is capable to describe the behaviour
of compressible fluids, c.f. [32].
To model the distributed control where the model parameters are distributed

in space the right-hand side in the momentum equation is adjusted, as used e.g.
in [11, 23, 49, 50, 56, 62]. The actuation of the flow via the boundary, i.e. via
the boundary conditions in the partial differential equation model, is beyond the
scope of distributed control. This issue is addressed e.g. in [51, 64, 65].
In the present case the considered model bases on the unsteady Oseen equa-

tions. The partial differential equations are transformed into a differential alge-
braic equation system by means of a semidiscretization eliminating the depen-
dency on the space variables. A general discussion on flow equations as a differ-
ential algebraic equation systems is given in the works by Weickert [105, 104].
For the obtained linear differential algebraic equation system with constant

coefficients an explicit solution formula is derived using the general theory for
differential algebraic equations provided e.g. in [70] and the specific results for
flow-connected differential algebraic equations given in [30].
The explicit solution formula for the Oseen system, adapted to the control

design, functions as an explicit input/output map.
The existence of an explicit formula for the input/output behaviour simplifies

the control design model. In most cases, however, a model order reduction is
necessary for a practical realization. An overview of the wide range of model
order reduction theory and techniques is presented e.g. [3, 7].
In this thesis an order reduction for the input/output map is carried out by

discretizing the input and output spaces, so that a finite dimensional representa-
tion of the input/output map can be computed. This approach was introduced
by Schmidt [90] in a semigroup context. The related concept of balanced trun-
cation for the spatially discretized linear Stokes and Oseen approximations are
studied in [56, 98].
The finite dimensional input/output map enables an effective realization of

optimal control for the Oseen equations. As motivated above, the Oseen ap-
proximation will be used in an iteration aiming at the optimal control of the
Navier-Stokes equations. The publications [11, 23, 48, 49, 50, 51, 56, 64, 62, 65]
represent a small selection of contributions on the optimal control of Navier-
Stokes equations. Results regarding the optimal control of the steady-state Os-
een equations are presented e.g. by Pošta and Roubíček [85]. The unsteady case
is studied e.g. by Bewley et. al. [11]. The control of the Stokes equations with
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1.3 Chapter Outline

respect to the control of the Navier-Stokes equations is e.g. studied in [34].
Finally the numerical realization of a control design often requires additional

efforts, since many commercial and academic simulation codes are designed for
static simulations without an interface to a control unit. Environments for the
simulation of control problems are provided e.g. by Matlab and Scilab [91,
100]. Further approaches and tools, coupling control and flow simulations, are
presented in [90, Ch. 5] and [95].

1.3 Chapter Outline
The two basic issues treated in every chapter of this work are the modeling of
the flow problem by spatial discretization and the control thereof. The overall
goal is to bring both together in a condensed mathematical formulation that is
suitable for application.
Thereto, chapter 2 Basic Equations and Concepts starts the thesis with

an explanation of the models and concepts used and with providing the mathe-
matical framework for their analysis. Regarding the model the Oseen equations
are derived from the Navier-Stokes equations (NSEs) and formulated in a weak
context. Also, results regarding existence and uniqueness of solutions are stated.
Secondly the essential ideas and mathematical formulation in regard to the con-
trol of flows are presented. Thirdly, the mathematical theory and realization of
discrete input/output maps (i/o maps) is introduced.
Chapter 3 Control of Spatial Discretized Oseen via I/O Mapping is

the core of the thesis, since it connects the spatially discretized flow equations
with the input and output functions in one explicit formula. This requires the
formulation of the spatial discretization of the Oseen equations, followed by
the formulation as a differential algebraic equation (DAE) system, for which an
explicit solution formula is established. The application to distributed control
is realized by extending the formula to the controlled system. On the basis of
the explicit formula an explicit representation of an linear i/o map for the Oseen
system is derived.
Approximating the i/o map by a finite dimensional matrix representation may

reduce the computational load within an optimization. The consistency error of
this model order reduction method is estimated in chapter 4 Error Analysis
of the Oseen I/O Map. Besides the signal approximation error also the error
due to the spatial discretization of the Oseen equations and the time integration
error are briefly addressed.
The chapter 5 Numerical Treatment of the State Equations addresses

the discretization schemes used within this investigation to solve the Oseen equa-
tions numerically. Regarding the spatial discretization the Q1P0 finite element
is discussed, along with the necessary pressure stabilization. The second part
provides an application of the Projection2 algorithm presented in [42] to the
Q1P0 discretized Oseen equations.
Chapter 6 Numerical Tests contains the setup and the results for the nu-
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1 Introduction

merical investigation of the above concepts on the basis of a model of a 2D driven
cavity flow.
The last chapter completes this work with summarizing conclusions and re-

marks and with an outlook on future tasks connected to the topic of this thesis.
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2 Basic Equations and Concepts

2.1 Incompressible Flow State Equations
Let Ω denote a Lipschitz domain in Rn, n = 2, 3 and let ∂Ω denote its boundary.
For an exemplary illustration the dimensionless Navier-Stokes equations on a
time interval (0, T ], represented by the momentum equation

vt + (v · ∇)v +∇p− 1
Re
4v = f in Ω× (0, T ] (2.1a)

the divergence free constraint

∇ · v = 0 in Ω× (0, T ] (2.1b)

together with completing initial and homogeneous Dirichlet boundary conditions

v|∂Ω = 0 and v|t=0 = v0

is considered. The above equations describe the motion of an incompressible
Newtonian fluid with constant density by the states of the velocity v and the
dynamic pressure p, representing the physical pressure divided by the density.
The right hand side f describes the field of the external forces, the Reynolds
number Re = V∞L/ν contains the specific flow characteristics, i.e. the length
scale L, a characteristic velocity V∞ of the flow and the dynamic viscosity ν of
the medium.
The dimensionless formulation of the NSEs is obtained by scaling the physical

quantities describing time, location, velocity and pressure in the flow modeling
equations by characteristic values. For a detailed derivation and discussion of
the physical and the dimensionless NSEs the reader is referred to standard works
on fluid dynamics, as e.g. [71, 76].

2.1.1 Spaces, Norms and Forms
In view of the finite element discretization approximation of the flow equations
discussed in the later sections and applied in the numerical experiments, this
chapter briefly introduces the framework for a weak formulation of the NSEs
and its linear approximations. More detailed expositions are provided e.g. in
[40, 47, 96, 99].
Let L2(Ω) denote the space of functions that are square integrable over Ω and

equipped with the inner product and norm

(p, q) =
∫

Ω
pq dx and ‖q‖0 = (q, q)1/2

13



2 Basic Equations and Concepts

respectively. With regard to the pressure, which is determined by (2.1) only up
to an arbitrary additive constant, the constrained space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
qdx = 0

}
is introduced. Denoting by ∂αq the weak derivative of q with respect to the
multiindex α, for any non-negative integer m one can define the Sobolev space

Hm(Ω) =
{
q ∈ L2(Ω) : ∂αq ∈ L2(Ω),∀|α| ≤ m

}
On this class of Sobolev spaces an inner product and the associated norm

((p, q))m =
∑
|α|≤m

(∂αp, ∂αq) and ‖q‖m = ((q, q))1/2
m

respectively, and a semi-norm

|q|m =
( ∑
|α|=m

(∂αp, ∂αq)
)1/2

can be defined. One has L2(Ω) = H0(Ω) and H1(Ω) is the space of all square
integrable functions over Ω with all its weak derivatives of first order in L2(Ω).
Together with its subspace

H1
0 (Ω) =

{
q ∈ H1(Ω) : q = 0 on ∂Ω

}
H1

0 (Ω) is of particular interest with respect to the NSEs with homogeneous
Dirichlet boundary conditions. The condition q = 0 on ∂Ω is short written for
q|∂Ω = 0 in L2(∂Ω), i.e. q equals zero everywhere on the boundary of Ω except
on a set of ∂Ω measure zero.
The dual space of H1

0 (Ω), denoted by H−1(Ω), contains the bounded linear
functionals on H1

0 (Ω). A norm for H−1(Ω) is given by

‖f‖−1 = sup
0 6=q∈H1

0 (Ω)

〈f, q〉
|q|1

with 〈f, q〉 denoting f(q). The use of |·|1 is valid, c.f.(2.3).
For vector valued functions of dimension d the respective spaces and its ele-

ments are denoted by bold letters and defined as follows:

L2(Ω) := [L2(Ω)]d = {v : vi ∈ L2(Ω), i = 1, . . . , d}

as well as

H1
0(Ω) := [H1

0 (Ω)]d and H−1(Ω) := [H−1(Ω)]d

14



2.1 Incompressible Flow State Equations

The respective inner products and norms are defined analogously to the ex-
ample

((v,w))1 =
d∑
i=1

((vi, wi))1 and ‖v‖1 =
[ d∑
i=1
‖vi‖21

]1/2

To express the inner product of L2 functions the scalar vector product is used

(v,w) =
∫

Ω
v ·wdx

In H1
0(Ω) for a constant CPF depending on Ω the Poincare-Friedrichs inequal-

ity
‖v‖1 ≤ CPF |v|1, v ∈ H1

0(Ω) (2.3)

holds, c.f. [108, p. 59], implying that the semi-norm |·|1 is equivalent to the
norm ‖·‖1 and can be used instead.
Now the following bilinear forms

a(v,w) = 1
Re

∫
Ω

grad v : grad wdx for v,w ∈ H1(Ω)

b(v, q) =
∫

Ω
q div vdx for v ∈ H1(Ω) and q ∈ L2(Ω)

and the trilinear form

c(u,v,w) =
∫

Ω
u · grad v ·wdx for u,v,w ∈ H1(Ω)

can be defined using the notations (grad v)ij = ∂vj/∂xi and

grad v : grad w =
d∑

i,j=1

∂vi
∂xj

∂wi
∂xj

u · grad v ·w =
d∑

i,j=1
uj
∂vi
∂xj

wi

Related to functions belonging to H1
0(Ω) and L2

0(Ω) the forms a, b and c have
the following properties. Given u,v ∈ H1

0(Ω) one has

a(u,v) = 1
Re

(u,v)1 and a(v,v) = 1
Re
|v|21

and thus, using the Cauchy-Schwartz inequality and recalling that |·|1 is a norm
on H1

0(Ω), one obtains boundedness and H1
0(Ω)-coercivity of a, i.e.

a(u,v) ≤ 1
Re
|u|1|v|1 and a(v,v) ≥ 1

Re
|v|21 (2.5)

respectively.
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2 Basic Equations and Concepts

The forms b and c are bounded, i.e. there exist constants Cb and Cc such that

|b(v, q)| ≤ Cb|v|1‖q‖1, for v ∈ H1
0(Ω), q ∈ L2

0(Ω) (2.6)

and

|c(u,v,w)| ≤ Cc|u|1|v|1|w|1, for u,v,w ∈ H1
0(Ω) (2.7)

Furthermore, if a v∞ ∈ H1
0(Ω) is weakly divergence-free, i.e. b(v∞, q) = 0 in

H−1(Ω), then the form c(v∞, ·, ·) : H1
0(Ω)×H1

0(Ω)→ R is skew-symmetric, i.e

c(v∞,v,u) = −c(v∞,u,v) and c(v∞,v,v) = 0 (2.8)

For a proof of the statements above the reader is referred e.g. to [72].
By means of the above forms a weak formulation of the stationary NSEs reads:

Problem 2.1. Given f ∈ H−1(Ω), find v ∈ H1
0(Ω) and p ∈ L2

0(Ω) such that

a(v,w) + c(v,v,w)− b(w, p) = 〈f ,w〉 for all w ∈ H1
0(Ω)

and b(v, q) = 0 for all q ∈ L2
0(Ω).

In order to treat the unsteady NSEs within in this framework, the state vari-
ables v and p are viewed as functions that take on values in a function space.
For illustration let (X, ‖·‖X) be a Banach space and (0, T ) an interval on the
extended line, then let Lr(0, T ;X) denote the space of Bochner integrable maps
φ : [0, T ]→ X (i.e. t 7→ ‖f(t)‖X is Lebesgue integrable) such that

‖φ‖Lr(0,T ;X) =
(∫ T

0
‖φ‖rXdt

)1/r
<∞ if 1 ≤ r <∞

or

‖φ‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖φ‖X <∞ if r =∞

For the theory of Bochner integrals and weak derivatives φt of abstract functions
see e.g. [29]. Having introduced the space

H = {v ∈ L2(Ω) : div v = 0; v = 0 on ∂Ω}

where again v = 0 holds almost everywhere on the boundary and also the incom-
pressibility constraint has to be interpreted properly, i.e. div u = 0 in H−1(Ω),
one can formulate the unsteady NSEs in the weak sense.

Problem 2.2. Given f ∈ L2(0, T ; H−1(Ω)) and v0 ∈ H, determine

v ∈ L2(0, T ; H1
0(Ω)) ∩ L∞(0, T ; H) and p ∈ L2(0, T ;L2

0(Ω))
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such that

〈v′(t),w〉+ a(v(t),w) + c(v(t),v(t),w)− b(w, p(t)) = 〈f(t),w〉
for all w ∈ H1

0(Ω)
b(v, q) = 0 for all q ∈ L2

0(Ω)

hold on (0, T ] in the sense of distributions, and v|t=0 = v0.

The framework above is appropriate for a discretization using mixed finite
elements that explicitly deal with the pressure, c.f. [27, 47]. Particularly for
the theoretical analysis of the NSEs a formulation is used, that impose the
incompressibility constraint on the respective function spaces eliminating the
pressure in the momentum equation. In this special context the space V = {v ∈
H1

0(Ω) : div v = 0} and its dual space V ∗, equipped with the norms

‖v‖V := |v|1 for v ∈ V and ‖f‖V ∗ := sup
v∈V

〈f ,v〉
|v|1

for f ∈ V ∗

are considered.
Thus the NSEs reads

Problem 2.3. For given v0 ∈ H and f ∈ L2(0, T ;V ∗) find v ∈ L2(0, T ;V ) such
that

〈v′(t),w〉+ a(v(t),w) + c(v(t),v(t),w)− b(w, p(t)) = 〈f(t),w〉
for all w ∈ H1

0(Ω)

holds on (0, T ] in the sense of distributions, and v|t=0 = v0.

This restatement of the NSEs is concisely derived and discussed in a general
context in e.g. [40, 96, 99] and serves as the basis for proofs of the results stated
below regarding existence and uniqueness of generalized solutions of the NSEs.
The equivalence of Problem 2.3 and 2.2 is ensured only under additional con-

ditions. A solution of Problem 2.2 also solves 2.3, but for the converse direction
the ansatz spaces in Problem 2.2 have to fulfill the continuous inf-sup conditions,
such that a uniquely defined pressure can be established from the velocity v, see
e.g. [72, p. 104]. In the unsteady case the solution v of 2.3 requires additional
regularity, c.f. [87, p. 434].

2.1.2 Oseen Equations
The Oseen equations were formulated by C. W. Oseen in 1910 as an extension
of the Stokes equations with respect to flows, in which convection effects cannot
be neglected. In fact, the Stokes equations are a linearization of the NSEs about
the zero state, whereas the Oseen equations base on a nonzero reference velocity.
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To model the setup of a slowly but with a constant velocity U moving fluid
attacking an obstacle, Oseen [83] extended the steady Stokes equation by a
convection term:

(U · ∇)v +∇p− 1
Re
4v = f (2.12)

Results regarding this kind, can be found for example in [38, 71].
In view of a linear approximation of the NSEs the most common variant of

the Oseen equations is

vt + (v∞ · ∇)v +∇p− 1
Re
4v = f (2.13)

with a divergence free reference velocity v∞. This type can be interpreted as a
Picard iteration to solve the nonlinear NSEs, see [27, p. 326], and Karakashian
[68] proves the global but in contrast to the quadratic for the Newton scheme
only linear convergence. The solvability of the stationary equations in the weak
sense are stated in [88, p. 282] and [72, p. 108].
A further variant of these equations is given by the system

θv + (v∞ · ∇)v +∇p− 1
Re
4v = f (2.14)

stemming from a temporal semidiscretization of (2.13), with the scalar function
θ = 1/τ > 0 given by the time-step length τ , c.f [82]. The conditions for
unique solvability in a weak sense are given e.g. in [22], further results regarding
stabilized finite elements, adaptive mesh refinement and approximation of the
NSEs can be found in the papers by Lube, as e.g. [4, 15, 77, 84].
The variants of Oseen equations, which are dealt with in this survey, appear

in different contexts and with different properties and purposes. Accordingly
the interpretation and the derivation of the equations as well as the behaviour
of the solutions, discussed in the section below, are different.
Formally the Oseen system can be derived by inserting a decomposition of

the actual solution v = v∞ + δv into the advection term of the Navier-Stokes
equation (2.1)

(v · ∇)v → (v∞ · ∇)v∞ + (δv · ∇)v∞ + (v∞ · ∇)δv + (δv · ∇)δv

Neglection of the quadratic term (δv ·∇)δv and the substitution of δv by v− v∞
then yield

(v · ∇)v → (v∞ · ∇)v + (v · ∇)v∞ − (v∞ · ∇)v∞
Thus an Oseen system for an incompressible flow with constant density reads

vt + (v∞ · ∇)v + (v · ∇)v∞ +∇p− 1
Re
4v =(v∞ · ∇)v∞ + f (2.15a)

∇ · v =0 (2.15b)

These equations can be interpreted as the outcome of one step of a Newton-
scheme leading from a guess v∞ to a correction v. In this context they occur
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during the solving of the nonlinear equations in the function space as well as
on the level of the algebraic equations defining the solutions of the discretized
NSEs by means of the Newton-method, see e.g. [26, 40, 47, 53].
Another variant of the Oseen system is used to investigate stability of solutions

of the NSEs. Thereto one considers the NSEs with a small perturbation (δv, δp)
added to the actual solution (v∞, p∞):

(v∞ + δv)t + ((v∞ + δv) · ∇)(v∞ + δv) +∇(p+ δp)−
1
Re
4(v∞ + δv) = f

∇ · (v∞ + δv) = 0

Eliminating the parenthesis, neglecting the quadratic in δv term and using the
fact that (v∞, p∞) solves (2.1), i.e. v∞,t + (v∞ · ∇)v∞ + ∇p∞ − 1

Re4v∞ = f
and ∇ · v∞ = 0 one obtains an Oseen system for the perturbation

δv,t + (v∞ · ∇)δv + (δv · ∇)v∞ +∇δp −
1
Re
4δv =0 (2.17)

∇ · v =0 (2.18)

These equations describe the evolution of small perturbations in the velocity
and pressure field as discussed in a weak formulation e.g. in [28] and in [67] with
respect to errors in numerical solutions. Furthermore the above system is used
to define and establish the existence of nonsingular branches of solutions of the
NSEs, c.f. [41, pp. 297].
Following the notation of the previous section, a weak steady-state and un-

steady formulation of the Oseen equations reads

Problem 2.4. Given f ∈ H−1(Ω) determine v ∈ H1
0(Ω) and p ∈ L2

0(Ω) such
that for a reference velocity v∞ ∈ H1

0(Ω)

a(v,w) + c(v∞,v,w) + c(v,v∞,w)− b(w, p)
= c(v∞,v∞,w) + 〈f ,w〉 for all w ∈ H1

0(Ω)
b(v, q) = 0 for all q ∈ L2

0(Ω)

hold,

and

Problem 2.5. Given f ∈ L2(0, T ; H−1(Ω)) and v0 ∈ H and, determine

v ∈ L2(0, T ; H1
0(Ω)) ∩ L∞(0, T ; H) and p ∈ L2(0, T ;L2

0(Ω))

such that for a v∞ ∈ H1
0(Ω)

〈v′(t),w〉+ a(v(t),w) + c(v∞,v(t),w) + c(v(t),v∞,w)− b(w, p(t))
= c(v∞,v∞,w) + 〈f(t),w〉 for all w ∈ H1

0(Ω)
b(v, q) = 0 for all q ∈ L2

0(Ω)

hold on (0, T ] in the sense of distributions, and v|t=0 = v0 in H,
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respectively.
Remark 2.6. The weak formulation in Problem 2.4 and 2.5 adapts to all types of
Oseen equations given above by changing the reference velocity v∞ and leaving
out terms. Also the formulation on divergence free spaces in line with Problem
2.3, that excludes the pressure, is possible.

2.1.3 Results Regarding Solvability
In the way the Oseen system approximates the NSEs also its solution is in
some sense an approximation of the solution of the corresponding nonlinear
problem. Accordingly, often the existence of an Oseen solution can be shown if
the underlying NSEs possess a unique solution, for example by interpreting the
Oseen system as one step of a Newton scheme, applied to the nonlinear NSEs.
Thus first of all well known results regarding the existence and uniqueness

of weak solutions of the NSEs are briefly reviewed. Additionally, the literature
provides a vast amount of results relating to other approaches e.g. classical,
strong and mild solutions.
For the stationary NSEs on a domain Ω ⊂ R{2,3} with a Lipschitz-continuous

boundary the following results hold. For every f ∈ H−1(Ω) Problem 2.1 has at
least one solution (v, p) ∈ H1

0(Ω)× L2
0(Ω), with

|v|1 ≤ Re‖f‖V ∗ . (2.21)

If in addition
Re2Cc‖f‖V ∗ < 1, (2.22)

where Cc is the optimally chosen stability constant in (2.6), then this solution
is unique.
For the corresponding Oseen equations as formulated in Problem 2.4 the fol-

lowing theorem holds

Theorem 2.7. If v∞ ∈ H1
0(Ω) is chosen such, that

|v∞| <
1

CcRe
and div v∞ = 0 in H−1(Ω), (2.23)

then for every f ∈ H−1(Ω) the Oseen Problem 2.4 has a unique solution (v, p) ∈
H1

0(Ω)× L2
0(Ω).

Proof. The proof starts with the observation that, implied by the boundedness
(2.6) of c, the functional

c∞ := c(v∞,v∞, ·) : H1
0(Ω)→ R

is bounded and therefore belongs to H−1(Ω). It follows that the right-hand
side is defined by a single element f∞ := c∞ + f ∈ H−1(Ω). Secondly the form
d : H1

0(Ω)×H1
0(Ω) is defined via

d(v,w) := (v,w) + c(v∞,v,w) + c(v,v∞,w)
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From the boundedness of a and c it follows that d is bounded as well. Considering
d(v,v) for a v ∈ H1

0(Ω) , and recalling that for the special chose of v∞ one has
c(v∞,v,v) = 0, c.f. (2.8), one obtains

d(v,v) = a(v,v) + c(v,v∞,v) ≥ 1
Re
|v|21 − Cc|v∞|1|v|21

≥
(

1
Re
− Cc|v∞|1

)
|v|21 = Cd|v|21

having used the estimates (2.5) and (2.6). By assumption, it follows that Cd :=
1/Re− Cc|v∞|1 > 0 and hence the H1

0 (Ω)-coercivity of d.
The task is now to prove that the equivalent restatement of Problem 2.4: For

f∞ ∈ H−1(Ω) find (v, p) ∈ H1
0(Ω)× L2

0(Ω) such that

d(v,w)− b(v, p) = 〈f∞,w〉 for all w ∈ H1
0 (Ω) (2.24a)

and b(v, q) = 0 for all Q ∈ L2
0(Ω) (2.24b)

has a unique solution. This will be done by showing that the homogeneous case,
when f∞ = 0, has only the zero solution.
Thereto, suppose that f∞ = 0, w = v and q = p, then the first equation in

(2.24) reads d(v,v) = 0 and the coercivity of d forces v = 0.
To establish, that also p = 0, one has to remark, that the spaces H1

0 (Ω) and
L2

0(Ω) fulfill the continuous inf-sup condition, c.f. [16, pp. 241-242], which says
that there exists a γ > 0, such that

inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω)

(
b(v, q)
|v|1‖q‖0

)
≥ γ

The inf-sup condition implies

γ‖q‖0 ≤ sup
v∈H1

0 (Ω)

(
b(v, q)
|v|1

)
for any q ∈ L2

0(Ω) (2.25)

Furthermore, testing (2.24a) with v and rewriting it as

b(v, p) = d(v,v)− (f∞,v)

delivers

|b(v, p)| ≤
{

(1/Re)|v|21 + 2Cc|v∞|1|v|21 + ‖f∞‖−1|v|1
}

Together with (2.25) for q = p this estimates gives a bound for the pressure

γ‖p‖0 ≤ sup
v∈H1

0 (Ω)

(
b(v, p)
|v|1

)
≤
{

1
Re
|v|1 + 2Cc|v∞|1|v|1 + ‖f∞‖−1

}
and forces p = 0, provided f∞ = 0 and v = 0.
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Remark 2.8. The condition (2.25) is crucial for the analysis of mixed finite ele-
ments schemes. It appears in the literature in several equivalent forms and is also
referred to as Ladyzhenskaya-Babuska-Brezzi (LBB) or div-stability condition.
Remark 2.9. Condition (2.23) on v∞ is natural since it unites the estimates
(2.22) and (2.21) in the sense, that v∞ as a solution of a NSE is uniquely
defined. However it restricts the model to small Reynolds numbers, i.e. to
small velocities in small domains. To obtain unique solutions in cases of higher
Reynolds numbers the theory of branches of nonsingular solutions of the NSEs
can be called on. This approach is discussed in Section 3.1.2 where the well-
posedness of the semidiscretized equations is studied.
Remark 2.10. The above theorem also applies for Oseen equations of type (2.17).
For Oseen type (2.13), the result even holds without requiring the smallness of
the reference velocity.
The treatment of the time dependent flow equations requires an extended func-

tional analytical framework. Since the below discussion of the semidiscretized
equations in a DAE context bases on the existence of steady-state solutions,
this chapter only gives the main ideas of how to establish the existence of time
dependent solutions.
The time dependent NSEs on a Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3} as

formulated in Problem 2.2 possess at least one weak solution v ∈ L2(0, T ;V ) ∩
L∞(0, T ; H), see e.g. [99, Thm. 3.1]. In the two dimensional case this solution is
unique [99, Thm. 3.2]. In 3D the uniqueness of the solution can only be shown
within a class of functions of higher regularity than necessary for the existence
[99, Thm. 3.4].
To prove the existence of solutions, the Oseen Problem 2.15 is formulated in

line with Problem 2.2:

Problem 2.11. For given v0 ∈ H and f ∈ L2(0, T ;V ∗) find v ∈ L2(0, T ;V )
such that(

vt,w
)

+ a(v,w) + c(v∞,v,w) + c(v,v∞,w) = c(v∞,v∞,w) + 〈f ,w〉
for all w ∈ H1

0(Ω)

holds on (0, T ] in the sense of distributions, and v|t=0 = v0 in H.

The idea is to apply a Theorem by Lions stated e.g. in [29, p. 219] and [108,
p. 424].
Thereto at first one has to establish that the considered spaces V,H, V ∗ form

an evolution triple. Furthermore it is necessary to show that vt for t ∈ (0, T )
takes on values in V ∗ and that in this case (vt(t),w

)
= d

dt (v(t), w)H.
Then one can define f∞ and the form d(v(t),w) analogously to the above

steady-state case. Since d(·, ·) does not depend on the time, t 7→ d(u,v) is
constant for any u,v ∈ H1

0(Ω) and thus strongly measurable.
Assuming again (2.23), one obtains the uniform coercivity of d. Also the

uniform boundedness can be derived.
In this case Problem 2.11 has a unique solution, for any f∞ ∈ L2(0, T ;V ∗).
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2.2 Control of Flows

2.2 Control of Flows
This chapter briefly introduces a mathematical formulation for abstract flow
control problems. A more detailed introduction into the topic can be found
e.g. in [48]. Due to the high complexity of the flow state equations the di-
rect approach to a solution of the resulting optimization problems is in general
unaffordable. In many applications even an approximate solution of the state
equations using turbulence models and relative coarse grids is too time consum-
ing for a significant investigation of the optimization problem, see [57] for an
example.
Therefore the practical realization requires low-dimensional models of the con-

trol design. The here proposed method for a model order reduction bases on the
linearization of the state equations and the use of finite-dimensional input and
output spaces.
This approach is motivated by two observations. Firstly, due to the fact

that especially closed loop approaches focus on local in time behaviour of the
system, the Oseen linearization of the NSEs promises good results as discussed
for example in [33]. Secondly, the linear structure enables the efficient use of an
i/o map and its discretizations for an optimization.

2.2.1 PDE Constrained Control

The optimal control of the i/o Oseen system is a special case of PDE constraint
optimal control and fits into the general framework of abstract optimization
problems as defined e.g. in [48].
For the abstract formulation the control variables and design parameters are

pooled in the variable u, the state variables are denoted by y, and functions
F (y, u) and J (y, u) define the constraints and the cost or objective functional,
respectively. Then the control problem reads: Find controls u and states y such
that

J (y, u)→ min (2.26a)

subject to

F (y, u) = 0. (2.26b)

If the constraints F are given by a partial differential equation (PDE) system
and the corresponding boundary conditions, the problem (2.26) is called PDE
constrained optimization.
A conventional approach for the control of unsteady PDE systems is to ap-

proximate it by a system of ordinary differential equations (ODEs), derived from
a spatial discretization. Thus for this introductory considerations, a linear ODE
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2 Basic Equations and Concepts

formulation of first order is assumed, e.g. F is defined by a system

vt(t) +Av(t) = f(t) + Bu(t), t ∈ (0, T ] (2.27a)
v(0) = v0 (2.27b)
y(t) = Cv(t) (2.27c)

Here, for t ∈ (0, T ], the functions v and f are assumed to take on values in the
state space Z, and u(t) ∈ U and y(t) ∈ Y denote the control and the observation
respectively. The linear operators A,B and C act on this spaces respectively. On
the basis of (2.27) one can exemplify two other important distinctions regarding
the control of PDE systems. The introduced definitions also hold in a more
general context, cf. the given references.
If the operator B : U → Z is bounded, the control is said to be distributed,

c.f. [9, 8, 74, 90]. This for example the case if the control Bu acts distributed
within a subdomain of the considered spatial domain. Otherwise if a boundary
or pointwise control is modeled, in the representation of a first order ODE system
the operator B in general becomes unbounded or contains distributions, cf. [90,
p. 39] and [9, p. 7].

Remark 2.12. The operator B must not be confused with the matrix B denoting
the discrete gradient operator in the later sections.

Secondly, (2.27) represents an open-loop control system. If the input u is
defined dependent of the states v or the observation y the corresponding system
is called state, output feedback control or closed loop control system. In contrast
to open loop systems closed loop controls can react on uncertainties such as
model changes arising during the optimization process, caused e.g by contingent
modeling errors. The robust feedback control aims to take into account and to
limitate possible deviations in the model-behaviour [21, 46, 94]
A general discussion regarding the control of PDE systems, enriched by nu-

merous refererences, can be found in the introductional chapter of [21], results
regarding the controllability e.g. in [79].

2.2.2 Control of Oseen Flow

To introduce a control of the physical system into its mathematical model, one
can define an operator B mapping a control function u into the field of the volume
forces. Then the control is simply added to the right-hand side of momentum
equation, and thus affects the modeled velocity and pressure field.
Furthermore, regarding optimization, a quantity y derived from the velocity

and pressure field like lift or drag forces or indicators for turbulence may be of
interest. Formally y is extracted by an output or observation operator C. Thus
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a controlled and observed Oseen system takes the form

vt + (v∞ · ∇)v + (v · ∇)v∞ +∇p− 1
Re
4v =(v∞ · ∇)v∞ + f + Bu (2.28a)

∇ · v =0 (2.28b)
y =C(v, p) (2.28c)

having omitted necessary boundary and initial conditions.
Remark 2.13. It is assumed throughout this paper that the continuity equation
(2.28b) is not subject to control, although the general formulation (2.27) makes
provisions to influence all parts of the right-hand side. In the special context
of flow modeling a perturbation of the continuity equation would necessitate
a change of the underlying model from incompressible to compressible flow as
treated e.g in [32].
Also, as implied by Proposition 3.10 in Section 3.2, a homogeneous discretized

continuity equation weakens the regularity conditions regarding the basis func-
tions for time discretization.

2.3 Input/Output Mapping
Regarding exemplarily a closed-loop control of an Oseen system given in (2.28),
the observed variable y is important rather than the actual states v and p. Thus
the presence of an operator G, directly mapping of the control u onto the output
y, may enable an effective treatment of the respective problems. The approach
of establishing such a G is motivated by several observations.
Focussing on the output the computation of the system response possibly

requires only a partial solution of the state equations, reflecting the output-
relevant components of the system. Regarding the numerical solution of the state
equations an analysis of G may enable effective goal-oriented mesh refinement.
Furthermore complex state system may possess a comparatively simple in-

put/output behaviour. Thus an i/o map can function as a base for an efficient
order reduction of the control design.

2.3.1 An Abstract Input/Output Map
Following the setup in Section 2.2.1 the linear time-invariant system

zt(t) +Az(t) = f(t) + Bu(t), t ∈ (0, T ] (2.29a)
z(0) = z0 (2.29b)
y(t) = Cz(t) (2.29c)

is considered. For t ∈ [0, T ] the state variable z is supposed to belong to a Hilbert
space Z, like Z = L2(Ω) on a domain Ω ⊂ RdΩ , and the control u(t) and output
y(t) are assumed in signal state spaces as e.g. U = L2(Σ) and Y = L2(Θ),
respectively, with domains Σ ⊂ RdΣ and Θ ⊂ RdΘ .
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Furthermore, let B : U 7→ Z and C : Z 7→ Y be linear bounded operators,
which allows the treatment of problems with distributed control and observation.
Provided the linear operator A : Z ⊃ D(A) 7→ Z is defined such, that for given v0
the above system possesses a unique solution, (2.29) implicitly defines a mapping

G : U → Y : u 7→ y

where
U := L2(0, T ;U) and Y := L2(0, T ;Y )

associating an input u with the respective solution y of system (2.29). Through-
out this paper G is supposed to be linear and bounded, in a general context
these properties depend on the underlying system and have to stated.
This framework follows the formulation introduced by Schmidt [90, p. 30] for

a semigroup approach. A concrete realization regarding the spatial discretized
Oseen equations in a DAE context is given in Section 3.3.1.

2.3.2 Discrete Input/Output Mapping
The basic idea is to approximate the input and output signals by representa-
tives in subspaces Uh1k1 ⊂ U and Yh2k2 ⊂ Y of finite dimensions dU and dY ,
respectively, and to consider the finite dimensional map

GS := PY,h2k2GPU,h1k1

where PU,h1k1 and PY,h2k2 denote the projections onto the respective sub-
spaces. In the case of a linear input/output map GS has a matrix representation
like e.g.

G = [(νi,Gµj)Y ]i=1,...,dY ,j=1,...,dU

provided {µj}dU

j=1 and {νi}dY

i=1 represent orthogonal bases of Uh1k1 and Yh2k2

respectively.
For the numerical analysis and for the implementation, the spatial and tem-

poral discretization of the input u ∈ U and output y ∈ Y signals has to be
formulated in more detail. Therefore the four families {Uh1}h1>0, {Yh2}h2>0,
{Rk1}k1>0 and {Sk2}k2>0 of subspaces

Uh1 ⊂ U, Yh2 ⊂ Y, Rk1 ⊂ L2(0, T ), Sk2 ⊂ L2(0, T )

of finite dimensions p(h1) = dimUh1 , q(h2) = dim Yh2 , r(k1) = dimRk1 , s(k2) =
dimSk2 are considered.
The set of discretization parameters (h1, k1, h2, k2) are often connected to

characteristic scales of the discretization such as element lengths. Thus the
dimensions of the subspaces often scale with the inverse of the respective pa-
rameter, i.e. for example r(h1) v 1/h1.
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2.3 Input/Output Mapping

The finite dimensional subspaces of U and Y are then defined via

Uh1k1 = {u ∈ U : u(t, ·) ∈ Uh1 , u(·, σ) ∈ Rk1 for almost every t ∈ [0, T ], σ ∈ Σ}
Yh2k2 = {y ∈ Y : y(t, ·) ∈ Yh2 , y(·, θ) ∈ Sk2 for almost every t ∈ [0, T ], θ ∈ Θ}

with Σ ⊂ RdΣ and Θ ⊂ RdΘ denoting the domains of control and observation as
introduced in the previous section.
The orthogonal projectors PU,h1k1 and PY,h2k2 then define the finite dimen-

sional approximation GS of an i/o map G via

GS = PY,h2k2GPU,h1k1 : U → Y

For a matrix representation of GS four families of bases {µ1, . . . , µp} of Uh1 ,
{ν1, . . . , νq} of Yh2 , {φ1, . . . , φs} of Sk1 and {ψ1, . . . , ψr} of Rk2 with their cor-
responding mass matrices

MU,h1 = [(µi, µj)U ]i,j=1,...,p

and analogously defined MY,h2 , MR,k1 and MS,k2 are introduced. Then the
discrete signals u ∈ Uh1k1 and y ∈ Yh2k2 can be represented by means of the
tensor product bases:

u(t, σ) =
p∑
k=1

r∑
i=1

uki φi(t)µk(σ), y(t, θ) =
q∑
l=1

s∑
j=1

yljψj(t)νl(θ) (2.30)

where uki are the elements of a block-structured vector u ∈ Rpr containing p
blocks of length r and y ∈ Rqs is defined similarly.
The mass matrices of the tensor product bases used in (2.30) read

MU,h1k1 = MU,h1 ⊗MR,k1 ∈ Rpr×pr, MY,h2k2 = MY,h2 ⊗MS,k2 ∈ Rqs×qs

The mass matrices are positive definite and define, for instance via

(v,w)pr;w = vTMU,h1k1w, for v,w ∈ Rpr

weighted scalar products and induced norms, indicated by the subscript w. With
respect to the weighted norms the coordinate isomorphisms

κU,h1k1 : Uh1k1 → Rprw , u 7→ u and κY,h2k2 : Yh2k2 → Rqsw , y 7→ y

are unitary mappings, since one has for u ∈ Uh1k1 and y ∈ Yh2k2

‖u‖U = ‖u‖pr;w and ‖y‖Y = ‖y‖qs;w

Thus, the formulation of GS handling the respective coefficient vectors reads

G = G(h1, k1, h2, k2) = κYPYGPUκ
−1
U : Rpr → Rqs
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2 Basic Equations and Concepts

having partially omitted the dependencies on h1, k1, h2, k2. In case of a linear
i/o map an explicit matrix representation can be obtained via the real valued
elements of H := MYG

Hkl
ij = [MYκYPYG(µl, φj)]ki = (νkψi,G(µl, φj))Y

forming a block-structured matrix in Rqs×pr with q × p blocks Hkl ∈ Rs×r.
The discrete analogon for G to the operator norm for G

‖G‖L (U,Y) = sup
u∈U

‖Gu‖Y
‖u‖U

is given by

‖G(h1k1, h2k2)‖qs×pr;w = sup
u∈Rpr

‖Gu‖qs;w
‖u‖pr;w

The following lemma states that G approaches G with a successive refinement
of the discretization. Thereto the inequality for the discretization parameters
(h′1, k′1, h′2, k′2) ≤ (h1, k1, h2, k2) has to be interpreted component-wise.

Lemma 2.14 ([90, p. 44]). For all (h′1, k′1, h′2, k′2) > 0, one has

‖G(h1, k1, h2, k2)‖qs×pr;w = ‖GS(h1, k1, h2, k2)‖L (U,Y) ≤ ‖G‖L (U,Y)

If the subspaces {Uh1k1} and {Yh2k2} are nested in the sense that

Uh′1,k′1 ⊂ Uh1k1 , Yh′2,k′2 ⊂ Yh2k2 for (h′1, k′1, h′2, k′2) ≤ (h1, k1, h2, k2)

then ‖G(h1, k1, h2, k2)‖qs×pr;w monotonically increases for decreasing discretiza-
tion parameters (h1k1, h2k2) > 0, and ‖G(h1k1, h2k2)‖qs×pr;w is convergent for
(h1, k1, h2, k2)↘ 0.

2.3.3 Application to PDE Constrained Optimisation
The practical realization of control or PDE constrained optimization in general
necessitates a reduction of the complexity of the regarded system. Starting with
a spatial discretization of the PDEs of the state space, the regarded system often
is given by a high-dimensional state space with a comparatively small numbers
of inputs and outputs. To obtain an approximate representation with a reduced
state space complexity but with the same inputs and outputs, various model
order reduction (MOR) can be applied. For an overview of MOR methods refer
to [3, 7, 90].
The establishment of an input/output map contributes to an effective treat-

ment of the control problem in several respects.
First, if the system is represented by an i/o operator G, directly mapping the

control u onto the state y = Gu the formulation of a PDE constraint optimal
control problem as given in (2.26) simplifies. Since G also implicitly contains
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2.3 Input/Output Mapping

the constraints, the optimal control problem described above turns into an un-
constrained minimization problem: Find controls u such that

J (Gu, u)→ min

In general, however, the computation of Gu e.g. during an optimization is
still unaffordable, so that a model reduction is still necessary. Thereto Schmidt
[90] suggests a systematic discretization, as described above, of the input/output
map.
Given a matrix representation of the discrete mapping the computation of the

system response for a given input reduces to a matrix vector multiplication. In
addition, for the application in control design and optimization the use of discrete
input/output maps is well suited in terms of error estimation, adaptivity and
practical relevance.
First, the error estimates for an i/o map as given in Section 4.1 are focussed on

the relevant system response, whereas e.g. reducing the state space complexity
often only provides rough estimates for the error in the input/output behaviour.
Second, the use of hierarchical bases for the input and the output enables a

straight-forward enrichment or reduction of the model. Also, a singular value
decomposition of the finite dimensional i/o map directly identifies the relevant
input and output functions, which can be used for an efficient system specific
formulation.
Finally, in practical applications e.g. in flow controls in particular the actua-

tion use a discrete spectrum of inputs, as e.g various sine frequencies. Also the
sensors measuring the output deliver discrete representations of the signal.
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3 Control of Spatial Discretized
Oseen via I/O Mapping

3.1 Spatial Discretization of Oseen

For the spatial discretization of the Oseen equations different schemes using
finite differences, finite volumes or finite elements are applicable. Each scheme
has its own and problem specific properties and advantages, described in many
standard works on computational fluid dynamics, e.g. [35, 106, 107].
For steady-state problems the time derivative in (2.15) vanishes and a spatial

discretization leads to an linear equation system of type

Axh = fh (3.1)

Here the matrix A contains discrete approximations of the differential operators
and the boundary conditions, xh contains the discretized state variables v and
p, while in fh the parts of the equation that do not depend on xh are clustered.
To capture time dependency, simply the inhomogeneity fh and the state vector

xh, i.e. the cell or node information if finite differences or volumes are used or
the coefficients of the basis functions in a finite element context, are assumed to
be time-dependent. In this case the derivative and the initial condition appear
in the semi discretization:

Eẋh(t) +Axh(t) = fh(t) in (0, T ] (3.2a)
xh|t=0 = x0,h (3.2b)

with a singular matrix E , containing the mass matrix of the velocity discretiza-
tion.
Considering (3.2) as a DAE with a sufficiently smooth fh and a consistent

initial condition x0,h, a sufficient condition for the existence of a unique solution
is the nonsingularity ofA, i.e. the existence of a unique solution of the discretized
steady-state problem (3.1), as stated in Section 3.2.
Therefore in the following section some results regarding the well-posedness

of the steady-state problem are delivered. A detailed discussion of the unsteady
NSEs, spatially discretized by means of finite elements, is provided by a series
of articles by Heywood and Rannacher [58, 59, 60, 61]
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3 Control of Semidiscretized Oseen

3.1.1 Mixed Finite Element Discretization
Since, in general, the same ansatz spaces are used for the discretization of both
the NSEs and the Stokes and Oseen equations, firstly the framework for the NSEs
is introduced and then adapted to the Oseen formulation. Having established
the weak formulation given in Problem 2.1 the approximation problem is defined
in the usual manner.
For a start one chooses finite element spaces over the considered domain Ω,

Vh and Sh for the velocity and the pressure, respectively. The parameter h
represents the acuteness of the discretization. Often h corresponds to a char-
acteristic element’s length and the dimension of the finite dimensional space is
proportional to 1/h.
Then one restates Problem 2.1 on these finite dimensional spaces, i.e. for

given f ∈ H−1(Ω) one determines vh ∈ Vh and ph ∈ Sh such that

a(vh,wh) + c(vh,vh,wh)− b(wh, ph) = (f ,wh) for all wh ∈ Vh (3.3a)
and b(vh, qh) = 0 for all qh ∈ Sh. (3.3b)

As, in general, the ansatz spaces for the velocity and the pressure are different,
this approach is referred to as mixed finite elements method. If the chosen finite
element spaces are subspaces of the ones used in the continuous formulation,
which will be assumed throughout this paper, then the method is said to be
conforming.
Provided specific bases for Vh and Sh are chosen, system (3.3) can be trans-

formed into a equivalent nonlinear system of algebraic equations. Let therefore
{φi}nv

i=1 and {ψj}
np

j=1 denote basis sets for Vh and Sh yielding

vh =
nv∑
i=1

vh,iφi and ph =
np∑
j=1

ph,iψj

Substituting these expressions into (3.3) and testing against the basis functions
one obtains
nv∑
i=1

a(φi, φk)vh,i +
nv∑
i,l=1

c(φr, φi, φk)vh,lvh,i −
np∑
j=1

b(φk, ph)ph,j = (f , φk)

for k = 1, . . . , nv (3.4a)

and
nv∑
i=1

b(φi, ψj)vh,i = 0 for j = 1, . . . , np (3.4b)

which is a quadratic algebraic system of nv + np equations for the nv + np un-
known coefficients. The linearization of the system (3.3) by carrying out one
Newton-step with the initial guess v∞ ∈ Vh immediately delivers the semidis-
cretized Oseen system:
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3.1 Spatial Discretization of Oseen

Problem 3.1. Given f ∈ H−1(Ω) find vh ∈ Vh and ph ∈ Sh such that

a(vh,wh) + c(vh,v∞,wh) + c(v∞,vh,wh)− b(wh, ph)
= c(v∞,v∞,wh) + (f ,wh) for all wh ∈ Vh (3.5a)

and

b(vh, qh) = 0 for all qh ∈ Sh. (3.5b)

The corresponding algebraic system for the coefficients vh,i, i = 1, . . . , nv and
ph,j , j = 1, . . . , np then reads

nv∑
i=1

dkivh,i −
np∑
j=1

bjkph,j = fk for k = 1, . . . , nv (3.6a)

and
nv∑
i=1

bjivh,i = 0 for j = 1, . . . , np (3.6b)

where

dki = a(φi, φk) + c(v∞, φi, φk) + c(φi,v∞, φk) for i, k = 1, . . . , nv
bji = b(φi, ψj) for i = 1, . . . , nv, j = 1, . . . , np

forming matrices D ∈ Rnv×nv and B ∈ Rnp×nv , respectively, and

fk = c(v∞,v∞, φk) + (f , φk) for k = 1, . . . , nv.

Associating the discrete velocity, pressure and right-hand side with the vectors
vh = [vh,i]nv

i=1,ph = [ph,j ]
np

j=1 and fh = [fk]nv

k=1, respectively, one obtains a
restatement of (3.6) [

D −BT
B 0

] [
vh
ph

]
=
[
fh
0

]
(3.8)

Using weighted norms similarly to those for discretized signal spaces in Section
2.3.2, the isomorphisms mapping between the discretized functions vh, ph and
their coefficient vectors vh,ph are unitary, in detail one has:

‖vh‖0 = ‖vh‖Rnv ;w and ‖ph‖0 = ‖ph‖Rnp ;w (3.9)

The matrix B be is called the divergence matrix and represents the divergence
operator on Vh. According to the definition of d the matrixD can be partitioned
into D = A+N +W with the vector-Laplacian matrix A, scaled by 1/Re, the
vector-convection matrix N and the Newton derivative matrix W .
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3 Control of Semidiscretized Oseen

To capture time dependency, as e.g. formulated in Problem 2.5, the inhomo-
geneity and the coefficient vectors are assumed to vary with t ∈ [0, T ]. So the
derivative d

dtvh appears in the spatially discretized system.[
M 0
0 0

]
d

dt

[
vh
ph

]
+
[
D −BT
B 0

] [
vh
ph

]
=
[
fh
0

]
(3.10)

Here M denotes the mass matrix corresponding to the velocity discretization:

M = [mij ], with mij = (φi, φj), i, j = 1, . . . , nv

Remark 3.2. While the vectors vh = vh(t) and ph = ph(t) depend on the time
t the coefficient matrices M and B are constant. Also, it is is assumed that the
reference velocity v∞ is constant in time, so that D is constant as well.
The case v∞ = v∞(t) enables a better approximation of the unsteady NSEs

but implies that D = D(t) which requires a completely different approach for the
treatment of the differential algebraic equation system (3.10), c.f. [70]. To have
both a small linearization error and constant coefficients in the approximation,
only small time intervals are considered. In view of optimal control this is an
affordable restriction, since e.g. closed-loop control acts locally in time.

3.1.2 Well-Posedness of Spatially Discretized Oseen Equations
This section reviews solvability properties of the spatially discretized steady-
state equations, which is necessary for the treatment of the unsteady equations
in the DAE context.
Since for conforming finite elements the inclusions Vh ⊂ H1

0(Ω) and Sh ⊂
Lh0 (Ω) hold, the forms a, b and c maintain their properties like boundedness
and coercivity in the semidiscretized formulation. However, the discrete inf-sup
condition:
There exists γ independent of h, such that

inf
0 6=qh∈Sh

sup
0 6=vh∈Vh

(
b(vh, qh)
|vh|1‖qh‖0

)
≥ γ (3.11)

has to be established specifically for every special choice of Vh and Sh to ensure
meaningful and stable approximations of the NSEs, Stokes and Oseen equations.
In fact, as an extension of Theorem 2.7 one can state the following

Corollary 3.3. Provided Vh and Sh fulfill the discrete inf-sup condition (3.11)
and if in accordance to condition (2.23) v∞ is chosen weakly divergence free and
sufficiently small, then the spatially discretized steady-state Oseen Problem 3.1
possesses a unique solution (vh, ph) ∈ Vh × Sh.

The proof is the same as for the continuous case of Theorem 2.7.
The restricition for vh,∞ immediately bounds the Reynolds numbers of the

considered problem. This is natural, since for Reynolds numbers above a prob-
lem specific critical Reynolds number multiple and unstable solutions occur, see
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3.1 Spatial Discretization of Oseen

e.g. [76, Ch. 8]. However also for high Reynolds numbers there exist branches
of nonsingular solutions. Within the context of hydrodynamic stability or lin-
earized stability of the NSEs, existence and uniqueness of a solution of the spa-
tially discretized Oseen equations can be established without a-priori limiting
the Reynolds number.
As stated e.g in [47, p. 14] by definition the existence of a local branch of non-

singular solutions of the NSEs as in Problem 2.1 is necessary and sufficient for
the unique solvability of the corresponding Oseen system (2.17), obtained by lin-
earization about the actual solution. At this, the term branch of solutions stands
for the set {(v(Re), p(Re)), Re ∈ I} of solutions of the NSEs parameterized by
the Reynolds number within a given interval I.
In this context and under the assumption that Vh and Sh, belonging to a

conforming finite element discretization, satisfy the inf-sup condition (3.11), e.g.
[27, Thm. 7.2] and [41, Thm. 4.1] state that the presence of a branch of non-
singular solutions of the NSEs {(v(Re), p(Re)), Re ∈ I} implies the existence of
a branch of non-singular solutions {(vh(Re), ph(Re)), Re ∈ I} of the correspond-
ing spatially discretized problem (3.3) and therefore the existence of a unique
weak solution of the corresponding semidiscretized Oseen system.
These results do not immediately apply to the Oseen equation derived via

a Newton-linearization, because of the arbitrarily chosen reference v∞ and the
appearance of the additional term on the right-hand side. Girault and Raviart
state as a corollary of [40, Thm. 6.3] that, given the solution vh ∈ Vh of the
semidiscretized NSEs (3.3) belongs to a branch of nonsingular solutions, the
Newton iterates (vnh, pnh), n = 1, 2, . . . defined via

a(vn+1
h ,wh) + c(vn+1

h ,vnh,wh) + c(vnh,vn+1
h ,wh) + b(wh, p

n+1
h )

= c(vnh,vnh,wh) + (f ,wh) for all wh ∈ Vh (3.12a)

and

b(vn+1
h , qh) = 0 for all qh ∈ Sh (3.12b)

converge quadratically to (v∗h, p∗h), provided the initial guess v0 is close enough
to the actual solution. This scheme does not require an initial guess for the
pressure. Similar results and estimations regarding the ball of convergence are
given in [47, p. 86], [53, Prop. 3.5] and [68, Thm. 4.1].
Taking v∞ as the initial guess, the first step of the Newton scheme (3.12)

defines an Oseen system for which, collecting the above arguments and results,
one can state the following

Corollary 3.4. Let (v, p) ∈ H1
0 (Ω)×L2

0(Ω) be a solution of Problem 2.1 for given
f ∈ H−1(Ω), and, for a discretization parameter h, Vh ⊂ H1

0 (Ω), Sh ⊂ L2
0(Ω)

denote subsets of conforming finite elements that fulfill the inf-sup conditions
(3.11).
Suppose that (v, p) belongs to a branch of nonsingular solutions and h to be

sufficiently small, then the corresponding semidiscretized NSEs (3.3) possess a
unique solution (v∗h, p∗h) ∈ Vh × Sh.
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3 Control of Semidiscretized Oseen

Furthermore, if v∞ is chosen sufficiently close to v∗h then the semidiscretized
Oseen system (3.5) has a unique solution (vh, ph) ∈ Vh × Sh.

3.1.3 Additional Remarks on Mixed FEM for Oseen Equation
For the theoretical consideration as well as for the numerical realization, non-
homogeneous Dirichlet boundary conditions for the velocity are transferred into
the right hand side. In practice this is done by introducing a set of velocity basis
functions {φi}nu+n∂

i=nu
belonging to the boundary and displaying functions

v̄h = vh + v∂Ω,h :=
nv∑
i=1

vh,iφi +
nv+n∂∑
i=nv+1

vh,iφi (3.13)

with vh :=
∑nv

i=1 vh,iφi ∈ Vh ⊂ H1
0 (Ω). Having fixed the coefficients vh,i : i =

nv+1, . . . , n∂ so that the second term in 3.13 interpolates the Dirichlet boundary
data, the components of the inhomogeneity fh in (3.8) now read

fk = c(v∞,v∞, φk) + (f , φk)− (
nv+n∂∑
i=nv+1

vh,iφi, φk) for k = 1, . . . , nv

Accordingly the the divergence free-constraint reads

b(v̄h, ψj) =
nv∑
i=1

vh,ib(φi, ψj) +
nv+n∂∑
i=nv+1

vh,ib(φi, ψj) = 0 for j = 1, . . . , np

giving in matrix form Bvh = −Bv∂Ω,h =: gh with

gh =
[
gj
]
, gj = −

nu+n∂∑
nu+1

vh,ib(φi, ψj), j = 1, . . . , np

Thus, the algebraic system for the semidiscretized Oseen equations reads[
D −BT
B 0

] [
vh
ph

]
=
[

fh
gh

]
(3.14)

If the boundary interpolating function v∂Ω,h is chosen weakly divergence free,
then gh = 0.
The obtained system is an equivalent to the Oseen Problem 3.1 on the finite

dimensional subspaces Vh ⊂ H1
0 (Ω) and Sh ⊂ L2

0(Ω) and hence under the
assumptions of Corollary 3.3 uniquely solvable.
Remark 3.5. The unique solvability was established by removing the freedom
in the pressure by means of the constraint space L2

0(Ω). In practice it is more
convenient to use Sh ⊂ L2(Ω) without the additional constraint

∫
Ω phdx = 0 for

ph ∈ Sh. Accordingly the divergence matrix B has a rank defect. To establish a
unique pressure solution, this defect is removed e.g. by letting out one line and
the corresponding row in B and BT respectively.
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3.2 Semidiscretized Oseen Equation as DAE

A closer look to the coefficient matrices reveals the evident character of the
conditions used to prove the existence of a unique solution.
Firstly the special chose of v∞ ensures the Vh-coercivity of the form d and

hence that the matrix D is positive definite. Thus, considering the homogenoues
equation (3.14) and premultiplying the first block line with by vTh and the second
with ph gives vThDvh = 0, yielding vh = 0 and thus the unique solvability with
respect to the velocity.
To solve the homogeneous system for the pressure, the Schur complement

is taken, which delivers BD−1BTph = 0, defining the pressure up to the null
space of the matrix BT . To establish the link to the discrete inf-sup condition
the following relation is helpful

Qh ∈ null(BT )⇔ BTqh = 0⇔ QThB = 0

⇔
np∑
j=1

qh,jbj,i = 0, for i = 1, . . . , nv

⇔
np∑
j=1

qh,jb(φi, ψj) = 0, for i = 1, . . . , nv

⇔ b(vh, qh) = 0 for all vh ∈ Vh

Then for spaces Vh, Sh fulfilling the discrete inf-sup condition, c.f. (2.25),

γ‖qh‖0 ≤ sup
vh∈Vh

(
b(vh, qh)
|vh|1

)
for any qh ∈ Sh (3.15)

one immediately obtains BTph = 0 ⇔ ph = 0 and thus a uniquely defined
pressure.
For mixed finite elements that fail the inf-sup condition in this respect, this

consideration delivers an approach how to ensure meaningful or stable pressure
approximations. As discussed in Section 5.1 one can replace the zero matrix in
(3.14) by a stabilization matrix Q chosen such that now the corresponding null
space null(BT ) ∩ null(Q) contains only the zero vector.
Apart from this, there are other cases in which the establishment of the inf-

sup conditions for a certain pair of finite element spaces fails. A more detailed
analysis and further references regarding this issue are given in [45, Ch. 3.13.2]
and [47, p. 21].

3.2 Semidiscretized Oseen Equation as DAE
Following the notation of the previous chapter the discretized Oseen system
corresponding to a mixed finite element formulation can be written as the par-
titioned equation [

M 0
0 0

]
d

dt

[
vh
ph

]
+
[
D −BT
B Q

] [
vh
ph

]
=
[

fh
gh

]
(3.16)
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where the coefficient matrices are constant, while uh,ph, fh and gh are time
dependent. The mass matrix M is positive definite, a property that cannot be
stated for D in general. In contrast to the Stokes case D consists of the vector-
Laplacian matrix A and of the advection matrices N and W , as exemplarily
defined in Section 3.1.1. Particularly the Newton derivative matrixW may cause
a loss of definiteness for D. However, it can be assumed that D is invertible,
which is the case if the reference velocity is reasonably chosen, for example in
accordance to the assumptions of Corollary 3.3.
The singular matrix Q appears, if stabilized discretization schemes are used.
Because of the singular coefficient matrix in front of the derivatives, (3.16) is

not an ordinary differential equation but a differential algebraic equation sys-
tem, that consists of differential equations and of possibly hidden algebraic con-
straints. The link between a DAE and underlying ODE is quantified by the
differentiation index of the DAE. To put it simple, the differentiation index is
the minimum number of times that all or a part of a DAE system has to be
differentiated in order to obtain an ODE system in the original variables.
To establish that (3.16) represents a linear differential algebraic equation sys-

tem of differentiation index ν = 2, some assumptions are necessary which, how-
ever, are natural for reasonably chosen discretization schemes. Firstly, ν 6= 1
since Q is not invertible. Then for matrices P1 and P2 spanning the nullspace of
Q and QT respectively it is assumed that pT2 BBT p1 is square and nonsingular
which is equivalent to ν = 2, see e.g. [70].
The formal definition of the differentiation index is given in the next section,

a concise examination of the NSEs in the DAE context can be found e.g. in
works by Weickert [105, 104].

3.2.1 Mathematical Framework for DAEs
On the way to the derivation of an explicit solution formula for the semidis-
cretized Oseen equation it is convenient to recall some facts about linear DAEs
with constant coefficients. The style and the notation is consistent with [70],
where the reader is referred to for the proofs and further discussion. As an
exemplary linear DAE initial value problem

E ẋ+Ax = f(t) for t ∈ [0, T ] (3.17)
x(0) = x0 (3.18)

is considered, defined by its matrix pair (E ,A).

Definition 3.6. A matrix pair (E ,A) with E ,A ∈ Rn×n is regular, if det(λE+A)
does not vanish identically for all λ ∈ C.

For a regular matrix pair the differentiation index can be defined via the
following
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3.2 Semidiscretized Oseen Equation as DAE

Theorem 3.7 (Weierstraß canonical form, [39]). Let (E ,A) be regular matrix
pair. Then, there exist nonsingular matrices P,Q ∈ Rn×n such that

(PEQ,PAQ) =
([
Id 0
0 N

]
,

[
J 0
0 Ia

])
,

where J is a matrix in real Jordan canonical form and N is a nilpotent matrix
also in Jordan canonical form. Moreover, it is allowed that one or the other
block is not present.

Provided in Theorem 3.7 the index of nilpotency of N is ν, then one defines
ind(E ,A) := ν, saying (E ,A) or the corresponding DAE has (differentiation)
index ν.
Setting ind(E) := ind(E , I) it follows by the definition that ν = ind(E , I)

is the smallest integer for which rank Eν+1 = rank Eν holds. In this case the
differentiation index of E is equivalent to the matrix index, used in the following
definition of a generalized inverse:

Definition 3.8. Let E ∈ Rn,n have ind(E) = k. A matrix X ∈ Rn,n satisfying

(D1) EX = XE
(D2) XEX = X (3.19)
(D3) XEk+1 = Ek

is called a Drazin inverse ED of E .

The Drazin inverse ED is well defined and unique. By means of the introduced
concepts one can state for a solution of linear DAE with constant coefficients:

Theorem 3.9. Let E ,A ∈ Rn,n be a commuting regular matrix pair. Fur-
thermore, let f ∈ Cν(0, T ;Rn) with ν = ind(E ,A). Then every solution x ∈
C1(0, T ;Rn) of E ẋ+Ax = f(t) has the form

x(t) = e−E
DAtEDEq+

t

∫
0
e−E

DA(t−s)EDf(s)ds +

(I − EDE)
ν−1∑
i=0

(−EAD)iADf (i)(t)
(3.20)

for some q ∈ Cn.

For the initial value problem (3.17) the above theorem implies: If q exists
such, that

x0 = EDEq + (I − EDE)
ν−1∑
i=0

(−EAD)iADf (i)(0) (3.21)

then there exists a unique solution, provided E ,A form a regular commuting
matrix pair and f is sufficiently smooth.
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3 Control of Semidiscretized Oseen

The commutativity requirement is no restriction for regular matrix pairs, since
for a λ̂ ∈ C chosen such that R(λ̂) := (λ̂E +A) is invertible, the matrices

Ê := R(λ̂)−1E and Â := R(λ̂)−1A

commute. Since the properties of a DAE system are not affected by a simple
scaling from the left, the above results hold for general linear DAEs with a regular
pair of constant coefficient matrices. To apply the solution formula directly for
a general system, the matrices E ,A and the inhomogeneity have to substituted
by

E ← (λ̂E +A)−1E , A ← (λ̂E +A)−1A and f ← (λ̂E +A)−1f

while the variable vector x remains unchanged.

3.2.2 Explicit solution of a semidiscretized Oseen system
Applied to the special case of spatially discretized Oseen equations (3.16) the
solution formula (3.20) simplifies.
In terms of the introduced DAE notation the Oseen system is represented by

the matrix pair

(E ,A) =
([
M 0
0 0

]
,

[
D −BT
B Q

])
(3.22)

The corresponding commuting matrix pair is obtained according to the men-
tioned above scaling by a multiplication with R(λ̂)−1. The assumption that A
is invertible bases on the reasonable condition that the stationary Problem 2.5
should possess a unique solution and simplifies the matters, since λ̂ in can be
fixed as zero. Thus, the commuting pair is

Ê = A−1E , Â = A−1A = I (3.23)

Using the invertibility of D and the Schur complement S := Q + BD−1BT

one has

A−1E =
[
D −BT
B Q

]−1 [
M 0
0 0

]
=
([
D 0
B S

] [
I −D−1BT

0 I

])−1 [
M 0
0 0

]
=
[
I D−1BT

0 I

] [
D−1 0

−S−1BD−1 S−1

] [
M 0
0 0

]
and thus

Ê =
[
E11 0
E21 0

]
=
[
(I −D−1BTS−1B)D−1M 0

−S−1BD−1M 0

]
(3.24)
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3.2 Semidiscretized Oseen Equation as DAE

The state vector
[
vh
ph

]
is not affected while the right-hand side is:

[
f̂
ĝ

]
= Â−1

[
fh
gh

]
=
[
D−1[fh +BT [S−1[gh −BD−1fh]]]

S−1[gh −BD−1fh]

]
(3.25)

which equals[
f̂
ĝ

]
=
[
(I −A−1BTS−1B)A−1fh +R0gh

−S−1BD−1fh + S−1g

]
=
[
E11M

−1fh +R0gh
E21M

−1fh + S−1gh

]
having set R0 := D−1BTS−1 and inserted I = MM−1.
In the present case of Â = I and ν = ind(Ê , Â) = 2 the explicit solution

formula (3.20) reads

x(t) = e−Ê
DtÊDÊq +

t

∫
0
e−Ê

D(t−s)ÊDf(s)ds− (I − ÊDÊ)
1∑
i=0

(Ê)if (i)(t)

and still requires the computation of the Drazin inverse and the matrix expo-
nential.
Using the arguments given in [30, Lemma 6 and 7] one has that indE11 ∈
{1, 2} and the following formula for the ED:[

E11 0
E21 0

]D
=
[

ED11 0
E21(ED11)2 0

]
(3.26)

Considering (3.26) it follows that

ÊDÊ =
[

ED11E11 0
E21(ED11)2E11 0

]
and, making use of the definition of the properties Drazin inverse given by defi-
nition 3.8 (D1),(D2)

I − ÊDÊ =
[

I − ED11E11 0
−E21(ED11)2E11 I

]
=
[
I − ED11E11 0
−E21E

D
11 I

]
(3.27)

Hence the last part of the explicit solution formula reads

1∑
i=0

(Ê )̂
i
f̂ (i) =

[
f̂ + E11 f̂

(1)

ĝ + E21f̂
(1)

]
and the multiplication with (3.27) delivers

[I − ÊDÊ ]
1∑
i=0

(Ê )̂
i
f̂ (i) =

[
[I − ED11E11]f̂ + [E11 − ED11E

2
11]f̂ (1)

ĝ − E21E
D
11f̂ + [E21 − E21E

D
11E11]f̂ (1)

]
(3.28)
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3 Control of Semidiscretized Oseen

For the remaining terms of the solution formula (3.20) one has to compute
the matrix exponential of ÊD. Using the special structure, one obtains

exp
(
−
[

ED11 0
E21(ED11)2 0

]
t

)
=
∞∑
i=0

1
i!

(
−
[

ED11 0
E21(ED11)2 0

]
t

)i
=
∞∑
i=0

1
i!

[
(−ED11)i 0

E21E
D
11(−ED11)i 0

]
ti

=
[

I 0
E21E

D
11 0

] ∞∑
i=0

1
i!

[
(−ED11)i 0

0 0

]
ti

=
[

exp(−ED11t) 0
E21E

D
11 exp(−ED11t) 0

]
Collecting all above derivations and arguments, the solution of the semidis-

cretized Oseen (3.16) equation on the interval [0, T ] reads[
vh(t)
ph(t)

]
=
[

exp(−ED11t)ED11E11Qv
E21 exp(−ED11t)ED11Qv

]
+

+
∫ t

0

[
exp(−ED11(t− τ))ED11f̂(τ)

E21 exp(−ED11(t− τ))(ED11)2f̂(τ)

]
dτ +

[
[I − ED11E11]f̂
−E21E

D
11f̂ + ĝ

]
+
[

[E11 − ED11E
2
11]f̂ (1)

[E21 − E21E
D
11E11]f̂ (1)

]
(3.29)

assuming that the vector Qv belongs to a given consistent initial value vh,0, c.f.
(3.21).
Recalling (3.25), i.e. f̂ = E11M

−1fh +R0gh, one can restate the last term of
the solution:

[
[E11 − ED11E

2
11]f̂ (1)

[E21 − E21E
D
11E11]f̂ (1)

]
=
[

[E2
11 − ED11E

3
11]M−1ḟh + [E11 − ED11E

2
11]R0ġh

[E21E11 − E21E
D
11E

2
11]M−1ḟh + [E21 − E21E

D
11E11]R0ġh

]
(3.30)

This form and property (D3) of the Drazin inverse, which is

EDEk+1 = EDEk for k = indE

serve as the basis for the following summary:

Proposition 3.10. Let k be the matrix index of E11. Following the above
derivation of Ê and Â and in particular equation (3.30) and the property (D3)
given in Definition 3.8 of the Drazin inverse, one can state for the spatially
discretized Oseen system (3.16)
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3.3 Application to Distributed Control of Oseen

1. if k = 1, then ḟh does not appear in the solution and ġh only in the second
component corresponding to the pressure, and

2. if k = 2, then ḟh only appears in the pressure solution.

It remains to investigate, how a suitable chosen discretization scheme may
imply that indE11 = 1. Lemma 8 in [30] points to that by stating that for the
case of (3.16) the index of E11 would be 1, if D was symmetric. For Oseen equa-
tion this is hardly the case, however for Stokes equations this is fulfilled in many
contexts and for most discretization schemes. In addition, the numerical simu-
lations, carried out within this investigation, delivered stable velocity approxi-
mations, maintaining the hope that also for discretizations of Oseen equations
indE11 may be one.
For practical considerations regarding an input/output map based on the ex-

plicit solution formula one can call on Corollary 3.10 to derive further important
facts and issues as stated in Section 3.3.2.

3.3 Application to Distributed Control of Oseen
Flow

The scope of the derivations above was to get a representation of an i/o map,
defined by the underlying Oseen system, to enable effective control of the flow
states. In the case of distributed control the explicit solution formula can be
extended to the controlled equations (2.28).

3.3.1 I/O Map for the Oseen System

As introduced in (2.28) the control u ∈ U is mapped into the equations as an
additional component Bu of f . Due to the linearity of the equations it can simply
be added to the respective formulas above. The discretization of Bu is done in
accordance to f , c.f. Section 3.1.1, i.e. the vector representing the control in the
discrete equations is defined via

ūh := [(Bu)k]nv

k=1, with (Bu)k = (Bu, φk), for k = 1, . . . , nv (3.31)

In view of a well defined i/o map it is assumed that ūh + fh are sufficiently
smooth and that there exists a Qv corresponding to the consistent initial value
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3 Control of Semidiscretized Oseen

vh,0, such that[
vh(t)
ph(t)

]
=
[
e−E

D
11tED11E11Qv

E21e
−ED

11tED11Qv

]
+

+
∫ t

0

[
e−E

D
11(t−s)ED11[E11M

−1[fh(s) + ūh(s)] +R0gh(s)]
E21e

−ED
11(t−s)[ED11]2[E11M

−1[fh(s) + ūh(s)] +R0gh(s)]

]
ds +[

[I − ED11E11][E11M
−1[fh(t) + ūh(t)] +R0gh(t)]

E21M
−1fh(t) + S−1gh(t)− E21E

D
11[E11M

−1[fh(t) + ūh(t)] +R0gh(t)]

]
+
[

[E11 − ED11E
2
11]R0ġh(t)

[E21 − E21E
D
11E11][E11M

−1[ḟh(t) + ˙̄uh(t)] +R0ġh(t)]

]
(3.32)

represents the unique solution of the well-posed spatially discretized Oseen equa-
tion extended by a control term[
M 0
0 0

]
d

dt

[
vh(t)
ph(t)

]
+
[
D −BT
B Q

] [
vh(t)
ph(t)

]
=
[
fh(t) + ūh(t)

gh(t)

]
in (0, T ] (3.33)

vh(0) = vh,0 (3.34)

The explicit formula for the solution (3.32) follows the notation and the ar-
guments introduced in Section 3.2. In particular the fact that indE11 ≤ 2 was
used to simplify the last term of the formula, c.f. Proposition 3.10.
Remark 3.11. A formula for Qv can be derived using the initial value for vh(0) =
vh,0 and the corresponding initial condition ph,0 for the pressure in (3.33) defined
by the discrete pressure Poisson equation, c.f. [45, p. 641]. Evaluating formula
(3.32) for t = 0 one obtains that Qv has to fulfill[

vh,0
ph,0

]
=
[
ED11E11Qv
E21E

D
11Qv

]
+[

[I − ED11E11][E11M
−1[fh(0) + ūh(0)] +R0gh(0)]

E21M
−1fh(0) + S−1gh(0)− E21E

D
11[E11M

−1[fh(0) + ūh(0)] +R0gh(0)]

]
+
[

[E11 − ED11E
2
11]R0ġh(0)

[E21 − E21E
D
11E11][E11M

−1[ḟh(0) + ˙̄uh(0)] +R0ġh(0)]

]
(3.35)

for any u ∈ U , defining ūh(0) ∈ Rnv . This condition has to be taken into account
for the special choice of U .
In the case of indE11 = 1 the control ūh(0) only appears in the second com-

ponent, implying that in this case for an output on the basis of the velocity the
restriction on U does not apply.
In the numerical investigation this restriction was circumvented by using pro-

jection schemes, that ensure consistent values for the velocity in every time-step.
See discussion in Section 5.
Remark 3.12. The necessary regularity of the right-hand side depends on k =
indE11. The case k = 1 requires continuous fh, ū and gh ∈ C1, if k = 2, then
fh, ū ∈ C1 and gh ∈ C2 is necessary.
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3.3 Application to Distributed Control of Oseen

To extract the output y the operator CT : Rnv+np 7→ Y is applied to the
solution formula. Assuming CT is linear, in this special the output generated
by the pressure and the velocity can be considered separately. Thus the system
response of (3.33) reads [

yv
yp

]
=
[
CTv 0
0 CTp

] [
vh(t)
ph(t)

]
The following sections as well as the numerical simulations deal with observa-

tions only on the basis of the velocity solution. For simplicity reasons all terms
containing gh are collected in R(gh(t)). Then, an input/output map

Γh : U → Y : u 7→ y

for the spatially discretized Oseen system is defined via

y(t) = CTv
{[
e−E

D
11tED11E11Qv

]
+
∫ t

0

[
e−E

D
11(t−s)ED11E11M

−1[fh(s) + ūh(s)]
]
ds

+
[
[E11 − ED11E

2
11]M−1[fh(t) + ūh(t)]

]
+R(gh(t))

}
(3.36)

Remark 3.13. Assuming CTv to be the identity (3.36) becomes an explicit solution
formula for the velocity, independent of any pressure solution. However the
information how the pressure is discretized is inherent, since E11 depends on
the discrete divergence and gradient matrices B and BT . This decoupling of
pressure and velocity is also implicitly used by projection schemes (c.f. Section
5.2.1) for the integration of the transient Navier-Stokes equations, which do not
carry along the pressure.
For an effective and clear treatment of the errors on the basis of (3.36) further

simplifying notations are introduced:

γhu(t) := CTv

{∫ t

0
e−(t−s)ED

11ED11M
−1ūh(s)ds+ [E11 − ED11E

2
11]M−1ūh(s)

}
(3.37)

y0(t) := CTv
[
e−tE

D
11ED11E11Qv +R(gh(t))

]
+ γhf(t) (3.38)

for t ∈ [0, T ]. Having dropped the dependencies on t, the system response
y = Γhu reads

Γhu = y0 + γhu

Since this mapping is affine linear, also its image is an affine linear subspace of
Y. To get an equivalent linear representation, for the following treatment the
linear operator

Gh : U → Y : Ghu := γhu = Γhu− y0 (3.39)
using only the linear part, is defined.
Remark 3.14. Referring to the abstract framework in Section 2.3.2, Gh represents
the infinite dimensional input/output map G. The different notation is used to
underline the fact, that the state space system has undergone a discretization
with respect to the parameter h.
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3 Control of Semidiscretized Oseen

3.3.2 Realization of Distributed Control for the Oseen System
The above analysis of the Oseen system and the corresponding I/O map set the
frame for the possible realization of the control. The central issue is the required
regularity in time of the discretized input signal uk1 . In line with the notation
introduced in Section 2.3.2, this depends on the choice of the finite dimensional
subspace Rk1 ⊂ L2(0, T ) used for the time discretization of the signals.
In the case of distributed control with a bounded operator B, the correspond-

ing function t 7→ ūk1,h(t) defined via equation (3.31) maintains the regularity of
Rk1 .
Recalling that ūk1,h appears to be a component of fh, one can call on Proposi-

tion 3.10 to derive necessary conditions on the regularity of the input functions
uk1 . Let therefore be k = indE11 with E11 as defined in (3.24). Specifically,

E11 = (I −D−1BTS−1B)D−1M

with S = Q+BD−1BT and the coefficient matrices D,B,Q stemming from the
spatial discretization of the Oseen system, as e.g. given in (3.16).
Then for a proper realization of the I/O map (3.37) one has to take into

account that

1. the case k = 1 requires uk1 ∈ C[0, T ] and

2. the case k = 2 requires uk1 ∈ C1[0, T ]

It can be proven that k = 1 for symmetric D, which, however, is not the case
for general Oseen approximations.
To circumvent the additionally required regularity of the input signals one can

restrict the output to the velocity component, since for k = 2 the derivatives of
ūh only occur in the pressure component.
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4 Error Analysis for the Oseen I/O
Map

The numerical analysis of an discretized i/o map requires to extend the common
approach of analysing the errors. A small global error implies a small error in
the observation but in general also relative fine meshes in regions where it is not
necessary for a suitable capturing of the i/o behaviour of the system. Thus it is
effective to derive goal orientated error estimators, enabling an effective calcu-
lation of the values of interest. Secondly, due to the discretization of the input
and output signals, a third source of inaccuracy adds to the consistency errors
referring to the time and to the spatial discretization of the state equations.
The proposed method is, that first the i/o map G is approximated by GD

defined via the semidiscretized equations, and then approximated by GDS map-
ping between the fully discretized signal spaces. The numerical integration of
the time depending equations adds a third level of estimation GDST subject to
the respective temporal discretization error. Repeated application of the triangle
inequality on the overall error in the suitable operator norm yields

‖GDST −G‖ ≤ ‖GDST −GDS‖+ ‖GDS −GD‖+ ‖GD −G‖ (4.1)

or, in short hand notation,

εDST ≤ εT + εS + εD

Since this investigation considers i/o maps referring to already spatially dis-
cretized systems, for a start only the difference

‖GDST −GD‖ ≤ ‖GDST −GDS‖+ ‖GDS −GD‖

is of interest and the error εD caused by the state space discretization is placed
back behind εS and εT within the error analysis. Also, the numerical integration
error εT is not to be investigated separately. However, as the decoupling above
of the overall error justifies, it has to be taken into account at least as an additive
constant.
These introductory remark hold for a general input/output system. The error

estimations in the following sections are valid for a concrete spatially discretized
Oseen system and uses a notation in line with the previous chapters. An overview
is given in Table 4.1.
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4 Error Analysis for the Oseen I/O Map

∞-dim. system spatially disc. system disc. i/o spaces

G : U → Y GD : U → Y GDS : Uh1k1 → Yh2k2

G : U → Y Gh : U → Y Gh;k1k2 : Uh1k1 → Yh2k2

G,H : Rpr → Rqs

Table 4.1: Denomination of the successively discretized input/output maps.
The first line contains the operators for a general system, the sec-
ond line lists the respective realizations for the Oseen system with
its matrix representations. In addition the numerical realizations
GDST : Uh1k1 → Yh2k2 and Gh;k1k2,T : Uh1k1 → Yh2k2 should be
considered, which contain possible rounding and integration errors.

4.1 Signal Approximation Error

The investigation of the error εS caused by discretization of the input and out-
put signals on the basis of the explicit formula of type (3.36) is based on the
framework and the notation introduced in Section 2.3.2 and 3.1.1. For a start,
the main elements are recalled and simplifying notations are defined.
The signals u ∈ U and y ∈ Y are approximated by means of finite dimensional

subspaces Uh1k1 and Yh2k2 and corresponding orthogonal projectors PU,h1k1 and
PY,h2k2 . Having dropped the subscripts h1, h2, for signals u ∈ U and y ∈ Y the
respective approximation are defined via:

uk1 := PU,k1u and yk2 := PY,k2y

Combining the projectors with the input/output map Gh, formal approxima-
tions are obtained, c.f table 4.1.

Gh,k2 := PY,k2Gh and Gh,k2,k1 := PY,k2GhPU,k1

Using this notation, the signal approximation error εS , describing the devi-
ation in the observation between the actual Gh and the discretized i/o map
Gh,k2,k1 for an u ∈ U in the Y-norm reads

‖Gh,k2,k1u−Ghu‖2Y =
∫ T

0
‖Gh,k2,k1u(t)−Ghu(t)‖2Y dt

In the following estimations the dependency on t is dropped. Inserting Gh,k1u
and defining

eu,k1 := u−PU,k1u and ey,k2 := PY,k2Ghuk1 −Ghuk1
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the approximation error can be expressed by means of the interpolation errors:

‖Gh,k2,k1u−Ghu‖2Y =
∫ T

0
‖Gh,k2,k1u−Gh,k1u+Gh,k1u−Ghu‖2Y dt

=
∫ T

0
‖ey,k2 +Gheu,k1‖2Y dt

=
∫ T

0
‖ey,k2‖2Y + 2(ey,k2 , Gheu,k1)Y + ‖Gheu,k1‖2Y dt

≤
∫ T

0
‖ey,k2‖2Y + 2‖ey,k2‖Y ‖Gheu,k1‖Y + ‖Gheu,k1‖2Y dt

making use of the symmetry of the scalar product for real valued states and the
Cauchy-Schwartz inequality.
The interpolation errors ey,k2 and eu,k1 are estimated with respect to the

concrete discretization scheme, as e.g. finite elements in space and wavelets in
time.
The explicit representation of the operator Gh may help to get a better esti-

mation of the transferred input error than ‖Gheu,k1‖Y ≤ ‖Gh‖‖eu,k1‖U , with a
possibly rough approximation of ‖Gh‖.
According to the definition of the input/output map, one has Gh = γh as

defined in (3.37). Using the simplifying notations

E1(τ) := e−τE
D
11ED11M

−1

E2 := [E11 − ED11E
2
11]M−1

a general estimate for the term ‖Gheu,hk1‖2Y delivers

‖Gheu,hk1‖2Y = ‖CTv
{∫ t

0
E1(t− s)ēu,hk1ds+ E2ēu,hk1

}
‖2Y (4.2)

≤ ‖CTv ‖2∗‖
∫ t

0
E1(t− s)ēu,hk1ds+ E2ēu,hk1‖2Rnv ;w (4.3)

= ‖CTv ‖2∗‖
∫ t

0
E1(t− s)ēu,hk1ds+ E2ēu,hk1‖2Rnv ;w (4.4)

with the weighted norm ‖·‖Rnv ;w introduced in (3.9), ēu,k1 denoting the coeffi-
cient vector corresponding to Beu,k1 , as defined in (3.31), and ‖·‖∗ an operator
or matrix norm.
The properties of the scalar product and the Cauchy-Schwartz inequality then

lead to the terms ‖
∫ t

0 E1(t − s)ēu,k1ds‖Rnv ;w and ‖E2ēu,hk1‖Rnv ;w. The second
can be estimated by

‖E2ēu,k1‖Rnv ;w ≤ ‖E11 − ED11E
2
11‖∗‖M−1ēu,k1‖Rnv ;w
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while the first requires further treatment:

‖
∫ t

0
E1(t− s)ēu,k1ds‖Rnv ;w = ‖

∫ t

0
e−(t−s)ED

11ED11M
−1ēu,k1ds‖Rnv ;w

≤
∫ t

0
‖e−(t−s)ED

11ED11‖∗‖M−1ēu,k1‖Rnv ;wds

≤
(∫ t

0
e(t−s)‖ED

11‖∗‖ED11‖∗ds
)(

sup
s∈[0,t]

‖M−1ēu,k1‖Rnv ;w

)
=
(
et‖E

D
11‖∗ − 1

)
sup
s∈[0,t]

‖M−1ēu,k1‖Rnv ;w

Collecting all above calculations, one can state the following

Proposition 4.1. Consider the i/o map (3.39) defined by the semidiscretized
Oseen equation. Let eu,k1 and ey,k2 be the interpolation errors in the input and
output space for time t ∈ [0, T ] and let ēu,k1 be the coefficient vector of the
spatially discretized input error in the state space Vh. Then,

1. the error in the observation caused by the signal discretization satisfies

‖Gh,k2,k1u−Ghu‖Y ≤ ‖ey,k2‖Y + ‖Gheu,k1‖Y

2. and for the response of the input approximation error one has

‖Gheu,k1‖Y ≤ ck
√
T‖CTv ‖∗ sup

t∈[0,T ]
‖M−1ēu,k1‖Rnv ;w

with a constant

ck =
(
eT‖E

D
11‖∗ − 1 + ‖E11 − ED11E

2
11‖∗

)
This error estimate holds for any discretization scheme which delivers a well

posed algebraic system of the form (3.16). For particular schemes the following
results deliver a more specific estimation of the approximation error.

Lemma 4.2. Consider a spatial discretization of the Oseen system as given in
(3.16). Assume, that for a h > 0 the coefficient matrices satisfy the following
partitionings

M = h2M̄, D = A− hW̄ , B = hB̄ and Q = h2Q̄

with M̄,A, W̄ , B̄, Q̄ = O(1) and A,M positive definite, Q positive semi-definite
and nullQ ∩ nullBT = {0}. Then for the corresponding matrix E11 one has

E11 = h2Ē11 = Ẽ11 +O(h3)

with Ẽ11 = O(h2) and ind Ẽ11 = 1.
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4.1 Signal Approximation Error

Remark 4.3. The assumed partitionings of the coefficient matrices hold e.g. for
the Q1P0 finite element method on a 2D uniform rectangular grid with h denot-
ing the maximum element length, c.f. Section 5.1.
Remark 4.4. The assumption nullQ∩ nullBT = {0} ensures the well-posedness
of the considered system. In particular the pressure complements S = [Q +
BD−1BT ] and [Q+BA−1BT ] are invertible.

Proof of Lemma 4.2. The application of the perturbation Lemma by Neumann
on D = A− hW̄ = A−1[I − hA−1W̄ ] gives

D−1 =
∞∑
n=0

(hA−1W̄ )nA−1 = A−1 +O(h) =: A−1 − hO

with a matrix O ∈ O(1).
Using the same arguments for S = [Q+BD−1BT ] = [Q+BA−1BT−hBOBT ]

it follows that

S−1 = S̃−1 +
∞∑
n=1

(hBOBT )nS̃−1

with S̃ := [Q + BA−1BT ] and U ∈ O(1) By assumption one has S̃ = h2[Q̄ +
B̄A−1B̄T ] and thus S−1 = S̃−1 +O(h) =: S̃−1 + hU with S̃−1 = O(h−2).
Inserting S−1, D−1 and h2M̄ = M into the formula for E11 one immediately

obtains

E11 =
{
I − [A−1 + hO]BT [S̃−1 + hU ]B

}
[A−1 + hO]h2M̄ =: Ē11h

2

and in particular, using S̃−1 = O(h−2) and the assumption on B = hB̄

E11 =
{
I − [A−1 + hO]BT [S̃−1 + hU ]B

}
[A−1 + hO]h2M̄ = Ẽ11 +O(h3)

with

Ẽ11 :=h2[I −A−1B̄T [Q̄+ B̄A−1B̄T ]−1B̄]A−1M̄ = O(h2)

Since the matrix A in Ẽ11 is symmetric and positive definite, one can apply
Lemma 8 in [30] stating that ind Ẽ11 = 1.

Since E11 = h2Ē11 yields ED11 = 1
h2 Ē

D
11, under the assumptions of Lemma 4.2,

the constant ck in the error estimate in Proposition 4.1 becomes

ck =
(
e

T
h2 ‖Ē

D
11‖∗ − 1 + h2‖Ē11 − ĒD11Ē

2
11‖∗

)
Remark 4.5. The above term h2‖Ē11 − ĒD11Ē

2
11‖∗ has to interpreted with care,

since Ē11 is not independent of h. More detailed, in general ‖E11 − Ẽ11‖∗ =
O(h3) and ind Ẽ11 = 1, as stated by Lemma 4.2, is not sufficient for

‖E11 − ED11E
2
11‖∗ → 0 = ‖Ẽ11 − ẼD11Ẽ

2
11‖∗, for h→ 0
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4 Error Analysis for the Oseen I/O Map

since in the general case ‖E11−Ẽ11‖∗ → 0 is not sufficient for ‖ED11−ẼD11‖∗ → 0,
c.f [103]. According to [19] in this specific Oseen case, for the convergence in the
Drazin inverses ‖ED11 − ẼD11‖∗ → 0 for h → 0 it is necessary that there exists a
h0 so that for all h < h0 one has rank(E2

11) = rank Ẽ11.

4.2 Time Discretization Error
The time integration error, caused by the numerical integration of the spatially
discretized state equations, is not of primary interest for the investigation of the
input/output behaviour. Nevertheless it should be kept small or at least well
balanced with respect to the signal approximation error to ensure meaningful
and reliable numerical results.
Instead of using the explicit solution formula, in the practical treatment the

underlying DAE is considered. In view of flow modeling, a common problem is
the integration of a DAE system of differentiation index 2, as e.g. given by the
system (3.16) representing the semidiscretized Oseen equations[

M 0
0 0

]
d

dt

[
vh
ph

]
+
[
D −BT
B Q

] [
vh
ph

]
=
[

fh
gh

]
(4.5)

on a time interval (0, T ] with a completing initial condition. As mentioned in
the latter Section 5.2 those DAEs require special methods. Particularly for the
solution of flow connected equations, the literature provides a vast amount of
well understood and investigated schemes as well as only partly proven, but
“working” approaches. Most of them more or less explicitly carry out an index
reduction of the DAE system.
In the present case of a semi-explicit system, there exists a couple of Runge-

Kutta methods and backward differencing schemes that are suitable to integrate
the equations directly. These methods and proofs of their convergence order can
be found e.g. in [55, Chapters VII.3/VII.4] and [54].
As an example, for Runge-Kutta methods of type Radau IIa the global error

is of order τ2s−1 in the velocity and of τs in the pressure component, where τ
denotes the time step size and s the number of stages. These orders of con-
vergence, however, are only guaranteed for sufficiently smooth solutions, which
require additional regularity of the inhomogeneity, c.f. Section 3.3.2.
Remark 4.6. Due to the possible occurrence of the matrix Q, the system given
by (4.5) is not in general a semi-explicit DAE system of the form

ẏ = f(y, z)
0 = g(y)

with sufficiently smooth functions f and g.
However, since Q is singular and constant, (3.16) can be transformed into a

equivalent semi-explicit system in order to apply the mentioned above Runge-
Kutta methods.

52



4.3 Spatial Discretization Error

In detail, there exist nonsingular matrices S, T such that

Q = S

[
I 0
0 0

]
T

Then a premultiplication of (4.5) by
[
I 0
0 S−1

]
and the use of the transformed

pressure variable p̃h = Tph give the equivalent semi explicit systemM 0 0
0 0 0
0 0 0

 d

dt

 vh
p̃1h
p̃2h

+

 D −B̃T11 −B̃T12
B̃21 I 0
B̃22 0 0

 vh
p̃1h
p̃2h

 =

 fh
g̃1h
g̃2h


with the induced partitioning and the transformed B̃T1 := BTT−1, B̃2 := S−1B
and g̃h := S−1gh.

4.3 Spatial Discretization Error
Starting the investigation on already partly discretized equations, on the first
sight, the spatial discretization error is not to be considered. With respect to
the approximation property regarding the actual continuous system, however,
a priori and a posteriori error estimates of the space discretization are impor-
tant. To put it simple, a priori error estimates capture the global error in the
approximation with respect to chosen discretization scheme. A posteriori error
estimators measure problem-dependent local errors and are used mainly within
adaptive mesh refinement techniques.
A concise discussion of a priori error estimates for finite element approxima-

tions of the NSEs are provided in [41, Ch. 4]. Regarding the Oseen equations
of type (2.14) some results are presented in [22].
For the here considered type of Oseen equations under the conditions of Corol-

lary 3.3 one can apply the arguments given in [41, Ch. 1, Thm 1.1.] to obtain a
general estimation for the mixed finite element discretization. In detail one has

|v− vh|1 + ‖p− ph‖0 ≤ C
{

inf
wh∈Vh

|v−wh|1 + inf
qh∈Sh

‖p− qh‖0
}

for a constant C and (v, p) ∈ H1
0(Ω)× L2

0(Ω) and (vh, ph) ∈ Vh × Sh denoting
the solution of the continuous Oseen Problem 2.5 and the spatially discretized
Oseen Problem 3.1, respectively.
This general result then serves at the basis for a priori error estimates con-

sidering specific finite elements with known estimates for the interpolation error
|v−wh|1 and ‖p− qh‖0.
Especially for practical considerations local and problem specific estimates

are important, which enable an adaptive improvement of the discretization in
the regions of main interest or error sources. This requires goal-oriented error
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4 Error Analysis for the Oseen I/O Map

estimators that quantify the discretization locally with respect to the actual goal
of the approximation.
A general introduction to goal-oriented error estimation and strategies for

mesh adaption is given in the monograph by Bangerth and Rannacher [5]. The
authors of [5] name the dual-weighted-residual (DWR) method as the method of
choice since it enables adaption to various goal functionals.
The DWR method is concisely described in the technical report by Rannacher

[6] also covering the realization for time-dependent problems and the application
to incompressible viscous flow and to optimal control. The work by Schmidt [90]
investigates an DWR based goal oriented error estimation in an i/o map context
for linear parabolic problems.
The approaches presented in [1] and [27] for Stokes and Oseen equations com-

pute error approximations by solving local diffusion problems. Therefore they
are suitable for slowly moving fluids with little convection.
A promising approach for goal-oriented error estimation for the Oseen equa-

tion is given in [81].
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5 Numerical Treatment of the
State Equations

In view of the numerical testing described in Section 6 a concrete realization
of the system (3.33) in a 2D domain had to be established and numerically
integrated.
For the spatial discretization Q1P0 finite elements were chosen. The low order

of the approximation, bilinear in the velocity and piecewise constant in the
pressure, implies a simple implementation and comparatively small coefficient
matricesM,D and B. Although the Q1P0 discretization fails the discrete inf-sup
conditions at least in 2D reliable stable results for the velocity can be expected,
c.f. [45, 47], which is sufficient in this special case, since the investigated output
was to be defined only on velocity field, c.f Section 3.3.2.
For the same reason a projection algorithm was chosen for the numerical inte-

gration. Projection algorithms for solving incompressible flow equations focus on
the computation of a consistent, i.e. divergence free velocity, while the pressure
is used mainly to improve the velocity solution.
In addition, projection algorithm can be interpreted as a straightforward index

reduction of the flow equation system, representing a DAE of differentiation
index 2, c.f. [66, 105]. This property is useful in the numerical realization,
since it stabilizes the computation of the solution of the Oseen system. This is
important with respect to possibly inconsistent initial values, c.f. Remark 3.11.

5.1 Exemplary Spatial Discretization by Q1P0 Finite
Elements

For the illustration of the Q1P0 finite element discretization, a model situation
is considered, where the spatial domain Ω ∈ R2 is supposed to be a rectangular,
subdivided into N ×N rectangular elements e of size hx1 × hx2 , as exemplarily
shown in Figure 5.1 with N = 4. This two-dimensional uniform rectangular
discretization reduces the mathematical formulation to a minimum and corre-
sponds to the scheme used for numerical simulations in this survey. However
Q1P0 elements also work for e.g. nonuniform, nonrectangular discretization as
well as for three-dimensional problems.
The pressure is approximated by functions belonging to

P0(Ωh) =
{
qh ∈ L2(Ω) : qh

∣∣
e
= const, for any e ∈ Ωh

}
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hx1

hx2

x2

x1

Figure 5.1: Q1P0 subdivision of a rectangular domain

containing functions which are piecewise constant on every element e. Here
Ωh denotes the subdivided domain Ω. For the given discretization, a function
qh ∈ P0 is defined by the values for the N2 cells of the Ωh. Accordingly the
dimension of the pressure ansatz space Sh = P0(Ω) is N2 =: np. A basis for Sh
is given by

{
ψj
}np

j=1, where ψj is the characteristic function for cell ej .

Remark 5.1. The Oseen equation and its approximations determine the pressure
only up to a constant. To remove this degree of freedom from the pressure
ansatz space one additional constraint is added, ensuring that

∫
Ω qhdx = 0.

Alternatively one can fix the pressure in one cell. Hence, at least for numerical
computations, the dimension of Sh is reduced to N2 − 1.
The velocity is approximated component-wise by means of scalar functions

vh ∈ Q1(Ωh) ⊂ H1(Ω) which are by definition bilinear on any element e ∈ Ωh
and continuous on Ω. A function vh ∈ Q1(Ωh) is uniquely defined by pregiven
values in the corner of the cells, referred to as the velocity nodes ci, i = 1, . . . , N2.
A basis is given by

{
ηi
}N2

i=1, with ηi(ck) =
{

1 k = i

0 else

Demanding that ηi is zero outside the adjoining cells, these basis functions are
uniquely defined.
In the case of Dirichlet boundary conditions the values in the velocity nodes

at the borders are fixed and thus one has dimQ1(Ωh) = (N − 1)2. For homoge-
neous boundary conditions the basis functions corresponding to the boundary
are omitted and one has Q1(Ωh) ⊂ H1

0 (Ω).
Then the vector valued space Vh can be defined via a separation of the basis
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5.1 Exemplary Q1P0 Discretization

functions for the x1 and the x2 component of the velocity:

Vh = span
{
φ1, φ2, . . . , φnv, φnv+1, φnv+2, . . . , φ2nv

}
:= span

{[η1
0

]
,

[
η2
0

]
, . . . ,

[
ηnv
0

]
,

[
0
η1

]
,

[
0
η2

]
, . . . ,

[
0
ηnv

]} (5.1)

with nv := (N − 1)2.
This splitting of the basis functions induces a splitting of the algebraic system

defined for general finite element schemes in Section 3.1.1. Specifically, with
vh = [v1, v2, . . . , vnv

, vnv+1, vnv+2, . . . , v2nv
]T := [vTh,x1

vTh,x2
]T , system (3.10)

readsM1 0 0
0 M1 0
0 0 0

 d

dt

vh,x1

vh,x2

ph

+

Dx1x1 Dx1x2 −BTx1
Dx2x1 Dx2x2 −BTx2
Bx1 Bx2 0

vh,x1

vh,x2

ph

 =

fh,x1

fh,x2

gh


with the specific partioning for D = A+N +W reading[

Dx1x1 Dx1x2

Dx2x1 Dx2x2

]
=
[
A1 0
0 A1

]
+
[
N1 +Wx1x1 Wx1x2

Wx2x1 N1 +Wx2x2

]
.

5.1.1 The Coefficient Matrices for a 2D Domain
Again the model problem of the previous section is considered, which enables a
general presentation. For the extension of the presented formulas to nonuniform
and nonrectangular grids the local specific geometry of the cells has to be adapted
in the formulation.
As defined in Section 3.1.1 the entries of the coefficient matrices are computed

by integrating products of the Sh and Vh basis functions and their derivatives
over the whole domain Ω. Since the set of cells ek represent a partitioning of Ω
for the coefficients the following equality holds, exemplarily formulated for one
entry of the vector-Laplacian matrix A:

aij =
∫

Ω
gradφi : gradφjdx =

N2∑
k=1

∫
ek

gradφi : gradφjdx

Supposing that aek
ij :=

∫
ek

gradφi : gradφjdx define the entries of the element
matrix Aek , one has

A =
N2∑
k=1

Aek

The same holds for the other coefficient matrices M,B,N and W .
Since the basis functions have only a local support, for the computation of

the element matrices only four velocity nodes and one pressure node have to be
taken into account, as indicated in Figure 5.2.
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!1’

" 3’

" 2’" 1’

" 4’

Figure 5.2: One element e′ of a Q1P0 subdivision with its connected pressure
and velocity nodes

Suppose that the enumeration of the velocity basis functions given in Figure
corresponds to a given element e′. Then ae′ij = 0 unless i, j ∈ {1′, 2′, 3′, 4′} yield-
ing that Ae′1 ∈ Rnv×nv has only 16 nonzero elements. Since in this exemplary
discretization all elements are of the same size, the element matrices only differ
in the position of its entries, corresponding to the element specific enumeration
{1′, 2′, 3′, 4′}.
Also, the coefficient matrices Bx1 , Bx2 and M1 can be displayed by one con-

densed element matrix. For the reassembling of the full matrices the local enu-
meration has to be reinterpreted. In the present Q1P0 discretization as displayed
in Figure 5.1 one has for i, j ∈ 1′, 2′, 3′, 4′ the mass matrix with me

ij =
∫
e
φiφjdx:

Me
1 = hx1hx2

36


4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4


the vector-Laplacian matrix with aeij =

∫
e

gradφi : gradφjdx :

Ae1 = hx1

6hx2


2 −2 −1 1
−2 2 1 −1
−1 1 2 −2

1 −1 −2 2

+ hx2

6hx1


2 1 −1 −2
1 2 −2 −1
−1 −2 2 1
−2 −1 1 2


the vector divergence matrices: bex1,1′i =

∫
e
ψ1′

∂φi

∂x1
dx, bex2,1′i =

∫
e
ψ1′

∂φi

∂x2
dx :

Bex1
= hx1

2


1
−1
−1

1

 and Bex2
= hx2

2


1
1
−1
−1


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5.1 Exemplary Q1P0 Discretization

and the vector gradient matrices [Bex1
]T and [Bex2

]T

[Bex1
]T = hx1

2
[
1 −1 −1 1

]
and [Bex2

]T = hx2

2
[
1 1 −1 −1

]
.

For the convection matrix N and W this condensed form does not work in
general. First, the restriction to four velocity basis functions has to be released,
to capture the fact, that the convection matrices sum up both x1 and x2 com-
ponent of the velocity. Second, the special chose of the reference velocity v∞
affects the matrices.
For the case of homogeneous Dirichlet boundary conditions and v∞ ∈ Vh, i.e.

v∞ =
nv∑
i=1

v
[1]
∞,iφi +

nv∑
i=1

v
[2]
∞,iφnv+i

=
nv∑
i=1

v
[1]
∞,i

[
ηi
0

]
+

nv∑
i=1

v
[2]
∞,i

[
0
ηi

]

with the splitting of the coefficient vector [v∞] =
[
[v[1]
∞ ]T [v[2]

∞ ]T
]T and in accor-

dance to (5.1), a simplified formulation of N +W can be derived.
In the following derivations the domain Ω in the formulation of the integral is

omitted:
∫
φdx :=

∫
Ω φdx.

Thus, one has for the parts N1 of the convection matrix N corresponding to
c(v∞ · ∇)v

N1 = [nij ], with nij = ∫(v∞∇)ηj · ηidx for i, j = 1, . . . , nv

For two-dimensional formulations ∇ = [∂x1 ∂x2 ]T and for a given vector w ∈
R2 a function η = η(x1, x2) one has

(w · ∇)η = w1∂x1η + w2∂x2η and ∂x(·) := ∂

∂x
(·)

Using the canonical splitting of the basis and of v∞ one obtains

nij = ∫(v∞∇)ηj · ηidx =
nv∑
k=1

v
[1]
∞,k ∫(ηk∂xηj)ηidx+

nv∑
k=1

v
[2]
∞,k ∫(ηk∂yηj)ηidx

and thus N1 can be decoupled as N1 = N
[1]
x1 +N

[2]
x2 with

[
N [1]
x1

]
ij

= [v[1]
∞ ]T


∫ η1ηi∂x1ηjdx
∫ η2ηi∂x1ηjdx

...
∫ ηnv

ηi∂x1ηjdx

 and
[
N [2]
x2

]
ij

= [v[2]
∞ ]T


∫ η1ηi∂x2ηjdx
∫ η2ηi∂x2ηjdx

...
∫ ηnv

ηi∂x2ηjdx


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Analogously one can define N [1]
x2 and N [2]

x1 playing a role for the computation of
the Newton derivative matrix W . So letW be the coefficient matrix correspond-
ing to c(v · ∇)v∞, then, for the above splitting of v∞, W has the form

W =
[
W

[1]
x1 W

[2]
x1

W
[1]
x2 W

[2]
x2

]
, with [w[l]

xk
]ij = ∫ ∂xk

v[l]
∞ηiηjdx for i, j = 1, . . . , nv

and k, l ∈ {1, 2}. Utilizing the homogeneous Dirichlet boundary conditions, a
partial integration gives

∫ ∂xk
v[l]
∞ηiηjdx =− ∫ v[l]

∞∂xk

(
ηiηj

)
dx

=− ∫ v[l]
∞ηi∂xk

ηjdx− ∫ v[l]
∞ηj∂xk

ηidx

Recalling that v[l]
∞ =

∑nv

i=1 v
[l]
∞,iηidx one obtains for i, j = 1, . . . , nv and k, l ∈

{1, 2}

[w[l]
xk

]ij = −[v[l]
∞]T


∫ η1ηi∂xk

ηjdx
∫ η2ηi∂xk

ηjdx
...

∫ ηnv
ηi∂xk

ηjdx

− [v[l]
∞]T


∫ η1ηj∂xk

ηidx
∫ η2ηj∂xk

ηidx
...

∫ ηnv
ηj∂xk

ηidx

 (5.2)

= −(N [l]
xk

)ij − (N [l]
xk

)Tij (5.3)

Thus the following representation of the advective component is obtained:

N +W =


[
N

[2]
x2

]
−
[
N

[1]
x1

]T −
[
N

[2]
x1

]
−
[
N

[2]
x1

]T
−
[
N

[1]
x2

]
−
[
N

[1]
x2

]T [
N

[1]
x1

]
−
[
N

[2]
x2

]T


Remark 5.2. The above formulas imply that the coefficients of the convection
matrix N + W are O(hx1 + hx2). This can be seen by the rough estimate of
(5.2), giving e.g.

|
[
−
[
N [1]
x1

]
−
[
N [2]
x2

]T]
ij

| ≤ max
l
|v∞,l|

{
nv∑
k=1
|∫ ηkηi∂x1ηjdx|+

nv∑
k=1
|∫ ηkηj∂x2ηidx|

}

If i = j the the summations as e.g.
∑nv

k=1|∫ ηkηi∂x2ηjdx| have 9 summands. If
i 6= j the the sum has 6, 4 or 0 summands, as the support of the basis functions
overlaps only for neighbouring velocity nodes. Further, having identified that

max
i,j,k=1,...,nv

|∫ ηkηi∂x1ηjdx| = |∫ ηlηl∂x1ηldx| =
hx2

3 ,

and max
i,j,k=1,...,nv

|∫ ηkηi∂x2ηjdx| = |∫ ηlηl∂x2ηldx| =
hx1

3 for any 1 ≤ l ≤ nv
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one obtains

|
[
−
[
N [1]
x1

]
−
[
N [2]
x2

]T]
ij

| ≤ 6(hx1 + hx2) max
l
|v∞,l|

and therefore,

|
[
N +W

]
ij
| ≤ 6(hx1 + hx2) max

l
|v∞,l| for i, j = 1, . . . , 2nv

since the above estimate holds equally for the remaining blocks in (5.2).

5.1.2 Pressure Modes and Stabilization
One possible way to establish the discrete inf-sup condition for a mixed finite
element scheme, is to identify Ωh as a patch of stable macroelements. A stable
macroelement is a cluster of elements, on which the local flow problem is well-
posed, if the velocity is imposed everywhere on the boundary, c.f [27]. If a grid
can be constructed by joining stable macroelements, then the inf-sup condition
is satisfied, see results in e.g. [14, 97].
For the stability analysis of the Q1P0 discretization the 2 × 2-macroelement

in Figure 5.3 is considered. The instability of a concrete patch does not imply
the failure of the inf-sup condition, the analysis of such macroelement, however,
identifies the source of the well-known instability of the Q1P0 scheme, c.f. e.g.
[17, 52, 89].

1 2

34

5

Figure 5.3: Q1P0 macroelement

Posing a local Oseen problem on this macroelement with given velocity at the
boundary gives the system [

D −BT
B 0

] [
vh
ph

]
=
[

fh
gh

]
(5.4)

with D ∈ R2×2, which is supposed to be positive definite, and

BT = 1
2

[
hx2 −hx2 −hx2 hx1

hx1 hx1 −hx1 −hx1

]
(5.5)
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The pressure complement of system (5.4)

BD−1BTph = BD−1fh − gh

defines the pressure up to the nullspace of BT .
The nullspace of the gradient matrix for the considered macroelement, given

by (5.5), contains the constant vector ph = 1 := [1 1 1 1]T , which is necessary
since the freedom in the pressure has not been removed, and the checkerboard
mode ph = ±1.
It can be shown that the spurious pressure mode ph = ±1 is inherent in

every rectangular n ×m macroelement. Thus for a stable pressure approxima-
tion using Q1P0 elements it is necessary to remove the checkerboard mode on
every macroelement. This is done by substituting the zero block in (5.4) by a
stabilization matrix Q, giving[

D −BT
B βQ

] [
vh
ph

]
=
[

fh
gh

]
with a stabilization parameter β. Now the pressure complement reads

[BD−1BT + βQ]ph = BD−1fh − gh

The stabilized system is well posed if the pressure matrix Sβ := [BD−1BT +
βQ] is positive definite, suggesting that Q should be positive semi-definite, and
nullSβ = 1. The latter condition ensures consistency, since the sought solution
is not affected by the stabilization.
An example for a minimal stabilization, i.e. only the checkerboard mode is

affected, is given by

Q∗ =


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1


whereas the jump stabilization matrix

Q∗ = hx1hx2


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


affects every pressure mode not proportional to 1. The derivation of Q∗ and Q∗
and strategies for the proper and optimal choice of the stabilization parameter
β is given in [27, p. 237-243].
To obtain a global stable pressure approximation for the Q1P0 elements, the

discretized domain Ωh is subdivided into macroelements, which the stabilization
is applied to. Having sorted the pressure coefficient by blocks, corresponding to
the macroelement subdivision, the global stabilization matrix is a block diagonal
matrix of the macroelement stabilization matrices.
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5.2 Time Integration of the Semidiscretized Equations

5.2 Time Integration of the Semidiscretized Oseen
Equations

As stated above the Oseen system (3.16) represents a DAE of index two. The
singularity of the coefficient matrix regarding the derivative of the state vector
interdicts explicit time integration methods in general. Furthermore even im-
plicit schemes both of low and high order do not guarantee reliable numerical
results in advance. For a general discussion of these issues the reader is referred
to [70], comprehensive and useful remarks with respect to flow problems are
given in [45, Ch. 3.16.1].
For the solution of the transient Oseen system one can adapt the most of the

numerous solution methods for the Navier-Stokes equations. Many of the com-
mon solution methods can be interpreted as an index reduction of the underlying
DAE, cf. [105]. For example the various projection methods are formulated by
means of the pressure Poisson equation (PPE) which is obtained by one deriva-
tion of the divergence-free constraint.

5.2.1 Projection Algorithms for Time-Dependent Flows
In particular in computational fluid dynamics projections methods have become
very popular since Chorin’s classical paper [20] submitted in 1968. This is due to
the relative simple implementation and the significant lowering of the computa-
tional effort coming with separate computation of the velocity and the pressure.
This section addresses the derivation and working principle of projection meth-
ods for incompressible flow. For an overview of specific schemes and the analysis
thereof the reader is referred to [86].
The formal derivation of a general projection algorithm in the continuous case

is briefly presented for the Navier-Stokes equations for a fluid with constant
density in a well behaved domain Ω in a certain time interval. Leaving boundary
and initial conditions aside, the system reads

v̇ − 1
Re

∆v + (v · ∇)v +∇p =f (5.6)

∇ · v =0 (5.7)

which can be rewritten as

v̇ +∇p = S(v) and ∇ · v = 0 (5.8)

where S(v) := f + 1
Re∆v − (v · ∇)v. Since (5.7) applies for all times, it can

be differentiated with respect to time and for a time independent domain one
obtains ∇ · v̇ = 0, i.e. also the acceleration v̇ is divergence free. Furthermore
one has ∇p is curl free as the gradient field of a scalar.
Therefore, following Chorin [20], (5.8) invoke the following interpretation.

For a given velocity v one can compute the vector S(v) and project it onto the
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5 Numerical Treatment

subspaces of both divergence free (here v̇ = PS(v)) or curl free (here ∇p =
QS(v)) functions.
The projectors P and Q are obtained as follows. Applying the divergence

operator on (5.8) eliminates the accelaration v̇ and gives

div grad p = divS(v) (5.9)

a representation of the PPE. Since the Laplace operator div grad = ∆ is invert-
ible, one can formally solve the PPE for the pressure to be given an expression
for the pressure gradient

grad p = grad ∆−1 divS(v)

and therefore for the operators Q = grad ∆−1 div and P = I − grad ∆−1 div.
Simply put, in practice, a projection method in the continuum may work

as follows. An approximated pressure gradient is used to compute by means
of the momentum equation an intermediate velocity ṽ, which in general is not
divergence free. Then ṽ is projected onto v in the appropriate space of divergence
free functions by solving the equations

v + gradφ = ṽ (5.10)
div v = 0 (5.11)

to obtain the velocity of the next timestep. The next iteration starts with
guessing a new pressure gradient. Advanced schemes furthermore interpret φ as
a pressure correction and update the pressure accordingly or reestablish it by
means of the PPE (5.9).
Remark 5.3. The use of the PPE includes the formulation ∆p in the continuous
case (5.9) and −[BM−1BT ]ph in the discrete analog. Since the pressure be-
longs to L2 rather then to H1 especially for low-order pressure approximations,
e.g. ph ∈ p1, the use of −[BM−1BT ]ph requires additional reasoning. One ap-
proach is to interpret −[BM−1BT ]ph as an approximation to ∆ph in regions of
sufficiently smooth pressure and as an algebraic rearrangement of the equations
elsewhere, c.f. [45, p. 642].

5.2.2 The Semidiscretized Linearized Case
To derive the correponding propositions and operators for the semidiscretized
(Oseen) case instead of (5.6) and (5.7) the system

M v̇h +Dvh −BTph = fh (5.12)
Bvh = gh (5.13)

deriving from a spatial discretization of the Oseen equations is considered in a
time interval [0, T ].
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5.2 Time Integration of the Semidiscretized Equations

The underlying spatial discretization scheme can be chosen arbitrarily. Here
the notation of a general mixed finite element scheme introduced in Section 3.1.1
is used. Thus,M ∈ Rnv×nv denotes the mass matrix, D = [A+N+W ] ∈ Rnv×nv

contains the viscous and the convection terms, B ∈ Rnp×nv and −BT ∈ Rnv×np

represent the discrete div and grad operators.
The state variables v and p are now represented by vectors vh = vh(t) ∈ Rnv

and ph = ph(t) ∈ Rnp containing the information on velocity and pressure,
respectively. In contrast to the continuous case, the continuity equation is not
automatically homogenous, since in the general case gh possibly establishes the
boundary conditions.
Such as (5.6), (5.7) imply (5.9), also the discrete variants (5.12), (5.13) can

be rearranged:

v̇h −M−1BTp = M−1(fh −Avh − [N +W ]vh)

and imply the discrete Pressure Poisson equation

−[BM−1BT ]ph = BM−1(f −Avh − [N +W ]vh)− ġh

giving the formulas for the analogously to the continuous case defined projections

v̇h = PhM
−1(fh −Avh − [N +W ]vh)−M−1BT [BM−1BT ]−1ġ

and

−M−1BTph = QhM
−1(fh −Avh − [N +W ]vh)−M−1BT [BM−1BT ]−1ġh

with the projectors Qh := M−1BT [BM−1BT ]−1B and Ph := I −Qh.

5.2.3 Projection2 for Semidiscretized Oseen
The method used in this thesis is an adaption to the Oseen problem of the
Projection2 algorithm as described in [44, 43]. First, the system coming from
a spatial Q1P0 discretization of the Oseen equation is modified by inserting
MM−1

L in front of the pressure term into the momentum equation:

M v̇h + [A+N +W ]vh −MM−1
L BTph = fh

HereML denotes the lumped mass matrix, in which the mass represented byM is
concentrated on the diagonal. This slight modification causes only a small error,
e.g. in [44, p. 2.3.2a] it is shown that the momentum equation is hardly effected
since MM−1

L vh = vh + (h2/6)∆vh + O(h4) for the discretization parameter h
and a sufficiently smooth function vh. Introducing this mixed mass matrices
a compromise between the unaffordable computation of the dense M−1 and
the inconsistent and for convection dominated flows often inaccurate use of the
diagonal lumped mass matrix. The motivation of this compromise becomes
evident, when (5.2.3) is rewritten as

v̇h +M−1[A+N +W ]vh −M−1
L BTph = M−1fh,
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which shows that for the calculation of v̇h the convection terms are approximated
globally while only the pressure contributes locally. Another backbone of the
Projection2 algorithm is the pressure update, which is closely related to the
question how the auxiliary function φ in (5.10) can be interpreted in terms of
the pressure correction. Assuming sufficient smoothness in the variables and
compatible boundary conditions one can derive

φ(T ) = T 2

2 ṗ0 +O(T 3)

holds as shown in [42, p. 595], which is used in the algorithm to model

gradφ(τ) ≈ −τ2B
T (ph − p0,h) (5.14)

and simultaneously defines the pressure update.
Thus, knowing pnh and vnh satisfying the discretized momentum and possibly

stabilized continuum equation at timestep n, Projection2 defines the steps to
march a time distance of length τ as described in Algorithm 5.3.

Algorithm 5.3 Projection2 for Stabilized Oseen

Step 1 Solve

M
(ṽn+1
h − vnh)

τ
+Aṽn+1

h + [N +W ]vnh −MM−1
L BTpnh = fnh

for the intermediate velocity ṽn+1
h

Step 2 Project ṽn+1
h onto the function vn+1

h satisfying the divergence equation
via solving the equation system (c.f. (5.10));

MLvn+1
h −BTφ = MLṽn+1

h (5.15)
Bvn+1

h + βQφ = gn+1
h (5.16)

Step 3 Update the pressure according to (5.14);

pn+1
h = pnh + 2

τ
φ

Reset n and go to Step 1!

For clearness reasons the Algorithm is presented using simple Euler integration
to solve for the intermediate velocity ṽ. As advised in [44, p. 852] for the actual
implementation higher order schemes like trapezoidal rule or Adam-Bashforth 2
should be used for the integration of the momentum equation.
A detailed description of the algorithm and further helpful and constructive

remarks can be found in [44, 42, 43].
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6 Numerical Tests
The general setup is a driven cavity flow in a two-dimensional square domain,
subject to a distributed control and observed via outputs, extracted from the
velocity field. The behaviour of the fluid is modeled by the Oseen equation,
spatially discretized by Q1P0 finite elements as introduced in Section 5.1. The
resulting, still time dependent, linear differential algebraic equation are numer-
ically integrated using the Projection2 algorithm explained above.
All numerical tests listed below were carried out in Matlab [101]. The open

source toolbox IFISS [93] served as the basis for several routines especially for
the spatial discretization and the visualisation of the flow field.

6.1 The Driven Cavity Flow Testproblem
The driven cavity flow problem is one of the classical test problems for compu-
tational fluid dynamics (CFD) codes. Driven cavity flow means the movement
and rotation of a fluid in a closed domain, forced by the impulse transferred
to the fluid as e.g. via one constantly moving boundary. In nature this flow
pattern can be observed in cavities on surfaces, which are tagentially attacked
by a moving fluid, as e.g. an open roof of a driving car or the inter car gaps of
a moving train.
The driven cavity in a two-dimensional square with one constantly moving

boundary is supposed to be stable, e.g. it possesses a unique steady solution
which is robust against small perturbations, up to a Reynolds number in the
vicinity of 104, c.f. the contribution of Quéré et al. to [80, p. 211]. However
several numerical investigations detected critical Reynolds numbers for the tran-
sition to the unsteady behaviour, that were below 103, c.f. e.g. [24, 102] and
the references therein. As a rule, the results presented for the driven cavity
by different authors coincide quite well up to Re = 1000. For higher Reynolds
numbers the predicted values for e.g. the critical Reynolds number, marking the
first occurrence of multiple solutions, differ with the use of different discretiza-
tion schemes on different grids, see [18, 31] for a summary of results. A concise
description of the various regimes of the driven cavity flow for different Reynolds
numbers is given in [92].

6.1.1 The Setup
The domain considered throughout these investigations is a two-dimensional
square represented by the computational domain Ω = {(x1, x2) ∈ (−1, 1)2}.
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6 Numerical Tests

The driven cavity flow is defined by the boundary conditions imposing that the
velocity is zero everywhere on the boundary except from x1-component on the
upper lid. There one sets vx1 = 1, see Figure 6.1.

0 1
−1

0

1

x1

x2

Figure 6.1: An exemplary Q1P0 discretization of the domain [−1, 1]2 square with
hx1 = hx2 =: h. The moving upper lid is modeled by imposing
vx1 = 1 for x2 = 1.

Supposing there is no external force acting on the fluid, for a suitably chosen
reference solution v∞ the considered infinite dimensional Oseen system reads

vt + (v∞ · ∇)v + (v · ∇)v∞ +∇p− 1
Re
4v =(v∞ · ∇)v∞ (6.1a)

∇ · v =0 (6.1b)
v|t=0= v0 (6.1c)

v|∂Ω=
{

[1 0]T if x2 = 1
[0 0]T elsewhere on ∂Ω

(6.1d)

defining the pressure p : [0, T ]× [−1, 1]2 → R and the velocity

v : [0, T ]× [−1, 1]2 → R2 : v(t;x1, x2) =
[
vx1

vx2

]
for a given initial velocity v0.
To keep the linearization error small and since the scope of this investigation

is closed-loop control that acts locally in time, T = 0.1 was chosen.
This nondimensional formulation is parameterized by the Reynolds number

defined by the product of the actual velocity of the lid with the actual side
length of the domain. Hence, increasing the Reynolds number, as illustrated in
Figure 6.2, means an increase of the lid velocity or the domain in the physical
model. Throughout this numerical simulation the Reynolds number was set to
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6.1 The Driven Cavity Flow Testproblem

Re = 1333, which, if air is taken as the flow medium, corresponds to a cavity of
size 0.1m and a lid velocity of 0.2m/s.

(a) (b) (c)

Figure 6.2: Streamline plot of steady-state solutions of the driven cavity with
variable Reynolds number on a 32× 32 Q1P0 grid. (a): Re = 1333,
(b): Re = 2333, (c): Re = 3333,

The DAE form was obtained by a stabilized Q1P0 spatial discretization of
the above system, using the subdivided domain Ωh consisting of 32 × 32 equal
squares. Recalling the definitions in Section 5.1 and the Dirichlet boundary
conditions, one has nv = 312 and np = 322 − 1.
For the pressure stabilization the pressure jump stabilization matrix Q∗ (see

Section 5.1.2) with the stabilization parameter β = 1/4 as suggested in [27, p.
241] was used. As the reference velocity v∞ the Q1P0 solution of the correspond-
ing steady-state Navier-Stokes equations was taken, approximately computed by
the built-in routines in [93].
Defining the coefficient matrices and the right-hand side in line with Section

5.1 the Q1P0 approximation of (6.1) reads:

Problem 6.1. Find coefficient vectors vh(t) ∈ R2nv and ph(t) ∈ Rnp corre-
sponding to vh(t) ∈ Q1(Ωh) and ph(t) ∈ P0(Ωh), respectively, so that[

M 0
0 0

]
d

dt

[
vh
ph

]
+
[
D −BT
B 1

4Q
∗

] [
vh
ph

]
=
[

fh
gh

]
(6.2)

holds in (0, T ], and

vh(0) = vh,0. (6.3)

For the investigation of the i/o map, the initial condition was chosen as vh,0 =
v∞.
These still time dependent equations, were numerically integrated using the

Projection2 algorithm with backward Euler as described in Section 5.2.3.
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6.1.2 Convergence of Projection2
For a significant investigation of the discrete i/o behaviour, further possible
computation errors have to be kept down. On the one hand, the error caused
by the numerical integration of the state equations has to be reduced to an
acceptable and affordable minimum. To investigate the error caused by the
integration using the Projection2 algorithm, system (6.2) was integrated with
the intial conditions v0 = 0 with different timestep sizes τ . Then the error in
the velocity εv := ‖vh(0.1)−v∗h(0.1)‖0 was measured in the L2-norm on Q1(Ωh),
where v∗h(0.1) denotes the solution of the system approximated with a very fine
time resolution τ = 10−7.
The evaluation of εv versus various timesteps τ , given in Figure 6.3, showed

a linear behaviour of the error, which is in line with [43, p. 634].

0.00001 0.0001 0.001 0.01

10−5

10−4

10−3

10−2

10−1

timestep !

ev

Figure 6.3: Behaviour of the numerical Projection2 integration error in the ve-
locity. The diagonal denotes the slope of linear convergence

6.2 Distributed Control of the Driven Cavity
In order to control the flow in the driven cavity, an input term has to be added
to the spatially discretized Oseen equations. Also an output has to be defined,
along with suitable domains and function spaces.
As the domain of control Σ := [−0.5, 0.5]× [−0.7,−0.5], and as the domain of

observation Θ := [−0.1, 0.1]× [0, 0.6] were chosen, c.f. Figure 6.4.

70



6.2 Distributed Control of the Driven Cavity

−0.5 −0.1 0.1 0.5 1
−1

−0.7

−0.5

0
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1
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#

Figure 6.4: Computational domain Ω and areas of control Σ and observation Θ

In view of influencing the x1- and the x2-components of the right-hand side,
U = Q1(Ωh) was chosen as the state space of input functions. In order to
define Uh ⊂ U let NΣ denote the set of nΣ × mΣ velocity nodes n of the Q1
discretization, that are located in the inner of Σ. Renumbering the nodes n 7→ nij ,
with i ∈ 1, . . . , nΣ representing its x1-coordinate and j ∈ 1, . . . ,mΣ its x2-
coordinate as illustrated in Figure 6.5 one has

NΣ =
{
nij : i ∈ 1, . . . , nΣ, j ∈ 1, . . . ,mΣ

}
Let ηij be the nodal Q1(Ωh) basis function associated with node nij , then one
can define

Uh := span
{
µ1, . . . , µnΣ , µnΣ+1, . . . , µ2nΣ

}
:= span

{[ξ1

0

]
, . . . ,

[
ξnΣ

0

]
,

[
0
ξ1

]
, . . . ,

[
0
ξnΣ

]}
with ξi :=

∑mΣ
j=1 η

i
j for i = 1, . . . , nΣ. The dimension of Uh is 2nΣ =: p.

In words, Uh contains functions uh ∈ Q1(Ωh) with uh = 0 on elements that
don’t intersect with Σ and uh = const in x2-direction on elements belonging to
the inner of Σ. The latter condition implies that uh ∈ Uh has no additional
degrees of freedom in x2-direction.
Thus for t ∈ [0, T ] one can define uh(t) ∈ Uh via

uh(t) =
nΣ∑
i=1

uix1
(t)µi +

nΣ∑
i=1

uix2
(t)µnΣ+i
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Figure 6.5: Enumeration of the velocity nodes n belonging to the inner of Σ

with functions uix1
, uix2

∈ L2(0, T ), defining for t ∈ [0, T ] the x1- and x2-
component of the signal at the nodes ni1, . . . , nimΣ

, with i = 1, . . . , nΣ.
Let Rk1 := span

{
ϕ1, . . . , ϕr

}
⊂ L2(0, T ) be a finite dimensional subspace of

dimension r, then the discrete input signal space can be defined via

Uh,k1 := span
{
µiϕj : i = 1, . . . , p, j = 1, . . . , r

}
In the following analysis the function uhk1 ∈ Uhk1 and its coefficient vector
uhk1 ∈ Rp·r are used without special distinction. The same holds for uhk1(t) ∈
Uh and the corresponding vector uhk1(t).
Since Uh ⊂ U = Q1(Ωh) one has uhk1(t) ∈ Q1(Ωh) and its coefficient vector

uhk1(t) ∈ R2nv can be filled up with zeros to become ũhk1(t) ∈ Rp, representing
uhk1(t) in Q1(Ωh).
Having chosen the input operator B as the identity the control uhk1(t) appears

in the DAE system as ūhk1(t) := M ũhk1(t) to give[
M 0
0 0

]
d

dt

[
vh
ph

]
+
[
D −BT
B Q

] [
vh
ph

]
=
[
fh + ūhk1(t)

gh

]
in (0, T ]

vh(0) = vh,0

The discrete output space Yhk2 his defined analogously to Uhk1 . The use of
the discretization parameter h for both the input and the output space reflects
the fact, that both spaces are defined in line with the state space discretization
Q1(Ωh).
First the set of MΘ of nΘ × mΘ velocity nodes belonging to the inner of

Θ is defined and renumbered as above, with i ∈ 1, . . . , nΘ representing the
x1-coordinate and j ∈ 1, . . . ,mΘ the x2-coordinate of velocity mij ∈ MΘ as
exemplarily illustrated in Figure 6.5.
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Again the nodal basis functions ηij are associated with velocity nodes mij ∈MΘ
for j = 1, . . . ,mΘ and i = 1, . . . , nΘ. Then Yh is defined via

Yh := span
{
ν1, . . . , νnΘ , νnΘ+1, . . . , ν2nΘ

}
:= span

{[ζ1
0

]
, . . . ,

[
ζmΘ

0

]
,

[
0
ζ1

]
, . . . ,

[
0
ζmΘ

]}
with ζj :=

∑nΘ
i=1 η

i
j for j = 1, . . . ,mΘ. The dimension of Yh is 2mΘ =: q.

This means that Yh contains functions y ∈ Q1(Ωh) with y = 0 on elements
that don’t intersect with Θ and, in contradiction to Uh with homogenity in x2-
dimension, y = const in x1-direction on elements belonging to the inner of Θ.
The latter condition implies that yh ∈ Yh has no additional degrees of freedom
in x1-direction.
Thus for t ∈ [0, T ] a function yh(t) is defined e.g. by functions yjx1

, yjx2
∈

L2(0, T ), pregiving for t ∈ [0, T ] the values for the x1- and the x2-component at
the nodes m1

j , with j = 1, . . . ,mΘ, giving:

yh(t) =
mΘ∑
j=1

yj,x1(t)νi +
mΘ∑
j=1

yj,x2(t)νmΘ+j

Projecting the coefficient functions yj,x1 , yj,x2 onto the finite dimensional sub-
space Sk2 := span

{
ψ1, . . . , ψs

}
⊂ L2(0, T ) gives a finite dimensional represen-

tation yhk2 of the function yh ∈ L2(0, T ;Yh) in the finite dimensional output
signal space

Yhk2 := span
{
νjψk : i = j, . . . , q, k = 1, . . . , s

}
The observation for this driven cavity system was realized as follows.

Let vij(t) =
[
vij,x1

(t)

vij,x2
(t)

]
:= vh(t;mij) denote the velocity solution of Problem

6.2 at time t ∈ [0, T ] at point mij for j = 1, . . . ,mΘ and i = 1, . . . , nΘ. Then
define CTv : Q1(Ωh)→ Yh := L2(0, 0.1;Yh) such that

CTv vh(t) =
mΘ∑
j=1

v̄j,x1(t)νi +
mΘ∑
j=1

v̄j,x2(t)νmΘ+j

with

v̄j,x1(t) := 1
nΘ

nΘ∑
i=1

vij,x1
(t) and v̄j,x2(t) := 1

nΘ

nΘ∑
i=1

vij,x2
(t)

According to the above definition of the output operator CTv vh(t) represents
the current velocity, averaged over nΘ velocity nodes in the lateral x1-dimension,
at mΘ sensor points equally distributed in the vertical extent of Θ.
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6.2.1 Setup
In this concrete setup the spatial discretization is given by the 32 × 32 grid of
the Q1P0 approximation of the state equations. For a start, a reduced test case
for distributed control is defined, to illustrate the principle and to check the
numerical errors
Thereto the reduced domains of control Σ1 := [−0.05, 0.05]×[−0.7,−0.5]} and

observation Θ1 := [−0.1, 0.1] × [0.3, 0.35] were considered. The corresponding
sets of inner velocity nodes NΣ1 and MΘ1 then include 1 × 3 and 3 × 1 nodes,
respectively. See Figure 6.6 for an illustration of MΘ1 .
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Figure 6.6: Distribution and enumeration of the velocity nodes in the reduced
and observation domain

Having established Uh as in the previous section, one defines for t ∈ [0, 0.1]
the input signal uh(t) ∈ Uh via the coefficient functions u1

x1
, u1
x2
∈ L2(0, 0.1):

u1,h(t) = u1
x1

(t)
[
ξ1
0

]
+ u1

x2
(t)
[

0
ξ1

]
Here, e.g. ux1(t)1ξ1 models the input signal of intensity ux1(t) that acts in
x1-direction, uniformly distributed in the velocity nodes belonging to Σ1.
The output was extracted via CT1,v by computing v̄h(t) which represents the

average velocity over the nodes m1
1,m

1
2,m

1
3 pictured in Figure 6.6, giving the

output signal

y1,h(t) := v̄x1(t)
[
ζ1
0

]
+ v̄x2(t)

[
0
ζ1

]
with [

v̄x1(t)
v̄x2(t)

]
:= 1

3
[
vh(t,m1

1) + vh(t,m1
2) + vh(t,m1

3)
]
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6.2 Distributed Control of the Driven Cavity

and ζ1 defined as in the previous section.
The temporal discretization was carried out by approximating the signal com-

ponents in L2(0, 0.1) by piecewise constant functions. Thereto the finite di-
mensional interpolation spaces R(k1) and S(k2) were defined by means of the
Haar-wavelet basis, i.e.

R(k1) = span
{
ϕi
}2k1

i=1 and S(k2) = span
{
ϕj
}2k2

j=1, k1, k2 ∈ N (6.4)

where ϕl denotes the l-th Haar-wavelet basis function in [0, 0.1], illustrated in
Figure 6.7.
This special choice equips the bases of R(k1) and S(k2) with the useful prop-

erties of orthogonal and hierarchical bases. The second means, that the signal
discretization can be refined or coarsened by simply adding or removing basis
functions, to change e.g. the degrees of freedom in R(k1) from 2k1 to 2k1+1.
The restriction of the levels of approximation to dimR ∈ {2k, k ∈ N} ensures

a uniform resolution on the whole time scale.
The projection of e.g. u1

x1
(t) and v̄x1(t) onto R(k1) and S(k2), respectively,

is then realized by the discrete wavelet transform, as described e.g. in [78]. To
circumvent a possible aliasing error, c.f [36, Ch. 1], it was ensured that the time
resolution of the input and output signals was sufficiently high.
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Figure 6.7: Orthonormal Haar wavelet basis of the L2(0, 0.1) subspace of piece-
wise constant functions: (a) ϕ1, (b) ϕ2, (c) ϕ3, ϕ4, (d) ϕ5, ϕ6, ϕ7, ϕ8

In view of the investigation of the approximation errors within the reduced
test case,

Γ1,h : u1,h 7→ y1,h
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6 Numerical Tests

was defined as the concrete realization of the input/output map defined in (3.36)
of the controlled driven cavity system:[

M 0
0 0

]
d

dt

[
vh(t)
ph(t)

]
+
[
D −BT
B 1

4Q
∗

] [
vh(t)
ph(t)

]
=
[
fh + ū1,h(t)

gh

]
(6.5)

y1,h(t) = CT1,vvh(t) in (0, 0.1]
and v(0) = v0

Here ū1,h(t) represents u1,h(t) in Q1(Ωh) and v0 is the steady-state solution of
the uncontrolled problem.
The extension to the full scale problem is straight forward. The domains

of control and observation Σ and Θ contain 3 × 16 and 9 × 3 velocity nodes,
respectively. Defining the spaces Uh and Yh as in the above Section 6.2 and the
discrete signal coefficient spaces as for the test case one obtains

Uh1 = span
{
µ1, . . . , µ32

}
, Rk1 = span

{
ϕi
}2k1

i=1

and Yh2 = span
{
ν1, . . . , ν18

}
, Sk2 = span

{
ϕj
}2k2

j=1

to define the input signals and to display the output.

6.2.2 Convergence in the Signal Approximation
For the convergence tests, the reduced testcase introduced in the previous section
was considered. To compute y1,h(t) := Γ1,hu1,h(t) for t ∈ (0, 0.1] system (6.5)
was integrated using Projection2 with a step size of 2.5 · 10−4.
Let Pk denote the discrete wavelet transform for a signal using the first 2k

Haar-wavelets. The projector Pk is used to project the signal coefficients onto
the finite dimensional subspaces R(k1) and S(k2) as defined in (6.4).
In line with the notation for the theoretical error analysis in Section 4.1 the

input and output interpolation errors are defined as eu1,hk1 := u1,h −Pk1u1,h
and ey1,hk2 = y1,h −Pk2y1,h, respectively.
Proposition 4.1 states that the signal approximation error can be estimated

via the sum of ey1,hk2 and the system response of the input interpolation error
Γ1,heu1,hk1 , measured in the Y = L2[0, 0.1;Q1(Ωh)] norm:

‖Γ1,hu1,h −Pk2Γ1,hPk1u1,h‖Y ≤ ‖ey1,hk2‖Y + ‖Γ1,heu1,hk1‖Y

The wavelet interpolation of level k1 and k2 uses piecewise constant functions
on subintervals of size 0.1/2k1 =: κ1 and 0.1/2k2 =: κ2, respectively, and the
wavelet transform produces an error, that decreases linear with a refinement of
the discretization.
Thus, in the present case one has ‖ey1,hk2‖Y = O(κ2). Also, using again

Proposition 4.1, one has ‖Γ1,heu1,hk1‖Y = C‖eu1,hk1‖U = O(κ1) with system
specific constant C.
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6.3 Optimal Control

For the convergence test, the input signal was set to

us1,h(t) = s(t)
[
ξ1
0

]
with a test signal s ∈ C(0, 0.1) as shown in Figure 6.9 (a). The response is
denoted by ys1,h(t) := Γ1,hus1,h(t) and illustrated by its x1-component in Figure
6.9 (b).
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Figure 6.8: (a) The 2 log of the error ‖ey1,hk2‖Y of the signal approximation
in the output space using the first 2k2 , k2 = 1, .., 6 Haar-wavelet
basis functions for the approximation. Part (b) shows the error in
the response ‖Γheu1,hk1‖Y in the output space, caused by the ap-
proximation of the input signal us1,h by means of 2k1 , k1 = 1, .., 6
Haar-wavelet basis functions. The straight line denotes the slope of
a linear convergence

As displayed in Figure 6.8 the interpolation ‖ey1,hk1‖Y error shows the ex-
pected linear behaviour. The quadratic convergence of ‖Γheu1,hk1‖Y for smaller
resolutions points to a smoothing property of the considered system. This prop-
erty is also evident in the illustration in Figure 6.9 and in the dissymmetry in
the matrix of the relative errors shown in table 6.1. For k1, k2 ≥ 2 the values
above the diagonal are significant smaller than their counterpart the transposed
value. This implies that in the given test case it is worthier to do an refinement
in the response space rather than in the input space.

6.3 Optimal Control
The goal of an optimal control of the system described above is to find a con-
trol u∗h ∈ Uh = L2(0, 0.1;Uh) that delivers the desired output y∗h ∈ Yh =
L2(0, 0.1;Yh). Given a corresponding input/output map Γh the unconstrained
optimization problem is defined by

77



6 Numerical Tests

0 0.05 0.1

−5

0

5

(a)

t
0 0.05 0.1

−0.02

−0.01

0

(b)

t

Figure 6.9: Illustration of (a) the approximation of the test signal s, denoted
by the dotted line, in the input space using the first 2 and 8 Haar
wavelet basis functions and (b) of the x1-component of the respective
response in the output space

k1\k2 1 2 3 4 5 6
1 1.0000 0.8744 0.8561 0.8520 0.8510 0.8508
2 0.7061 0.3896 0.2440 0.1899 0.1738 0.1696
3 0.6922 0.3585 0.1870 0.1022 0.0658 0.0529
4 0.6911 0.3559 0.1817 0.0919 0.0475 0.0266
5 0.6910 0.3558 0.1814 0.0912 0.0460 0.0237
6 0.6911 0.3558 0.1814 0.0912 0.0460 0.0237

Table 6.1: Matrix of the relative error ‖Γ1,hus1,h−Pk2Γ1,hPk1us1,h‖Y/e11 caused
by approximating the input signal and corresponding response signal
by means of Haar wavelets using 2k1 and 2k2 basis functions. In the
lines k1 denotes the level of the of the approximation of the input
signal, in columns k2 stands for the degree of the interpolation of the
response. The normalization e11 is the error for k1 = k2 = 1
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6.3 Optimal Control

Problem 6.2. Given y∗h ∈ Yh find uh ∈ Uh such that

‖y∗h − Γhuh‖2Yh
→ min

6.3.1 I/O Map for the Driven Cavity
In line with the mathematical framework of Section 2.3.2 the matrix representa-
tion of the input/output map is established by computing the system response
basis functions of the input space Uhk1 and testing them against all basis func-
tions of the output space Yhk2 . In the present case, one has for the input and
output space

Uhk1 = span
{
µlϕj : l = 1, . . . , 32, j = 1, . . . , 2k1

}
(6.7a)

and

Yhk2 = span
{
νkϕi : k = 1, . . . , 18, i = 1, . . . , 2k2

}
(6.7b)

respectively. Thus the block-structured matrix

H =
[
Hkl

]
k=1,...,18
l=1,...,32

, with

Hkl = [(νkϕi, Gh(µlϕj))Y ]i=1,...,2k2

j=1,...,2k1

maps the input signal coefficient vector uhk1 ∈ R32·2k1 onto MYyhk2 , where
MY denotes the mass matrix corresponding to the discretization of Yhk2 and
yhk2 ∈ R18·2k2 the coefficient vector of the discretized system response.
Remark 6.3. The signal response yh = Gh(uh) is computed by numerical inte-
gration of the semidiscretized state equations, i.e. y is a vector containing the
function values at discrete points within the time interval. The time integral of
the inner product (yh, Gh(uh))Y and the norm ‖yh‖Y are then approximated
using piecewise the trapezoidal rule, which causes an inaccuracy of order 2 with
respect to the time step used in the Projection2 algorithm. Recalling that the
Projection2 algorithm produces a time integration error of first order, this error
is neglected.

6.3.2 Realization
In the following formulations, especially when speaking of concrete realizations,
the subscripts of the coefficient vectors yhk1 and yhk2 are dropped.
Using the discretized signal spaces Uhk1 and Yhk2 the optimization problem

can be solved approximately by finding an optimal input coefficient vector u and
considering its response MYy = Hu. The definition of Gh (3.39) required the
subtraction of the constant offset y0,h, which has to be added to the output to
obtain the actual state. Thus the approximated Problem 6.2 reads
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6 Numerical Tests

Problem 6.4. Given y∗h ∈ Yh find u ∈ R32·2k1 such that

‖y∗h − (y0,h + κ−1
Yh
M−1
Y Hu)‖2Y → min (6.8)

where κ−1
Y maps the coefficient vector M−1

Y y onto the corresponding function
in Yhk2 .

6.3.3 Application Examples
For a start, a one dimensional in space example is presented to illustrate the
principle of the optimization.
Thereto the reduced testcase introduced in Section 6.2.1 was considered, which

models the input signal by means of two spatial basis functions and 2k1 temporal
basis functions. Also, the output possesses two degrees of freedom in space,
representing the components of the mean velocity around the sensor point, and
2k2 degrees of freedom in the time discretization.
The goal of the optimization was to find a control u∗1,h ∈ Uh such that the

x1-component of the response Γ1,hu∗1,h ∈ Yh is zero.
Thereto the corresponding optimization Problem 6.4 was considered to com-

pute an approximate solution on the basis of the discretized signal spaces Uhk1

and Yhk2 .
Find u∗1 ∈ R2·k1 such that

‖
[
y0,h + κ−1

Y M−1
Y H1u∗1

]
x1
‖2Yh
→ min,

using the i/o map H1 ∈ R1·2k2×2·2k1 .
The optimization was run for k1, k2 ∈ {4, 5, 6} to find an appropriate optimal

solution u∗1(k1, k2), using the line search algorithm of the Matlab [101] function
fminunc. As the start value u = 0 was chosen. The result for k1 = k2 = 5 is
displayed in Figure 6.10.
The continuous in time system response Γ1,hu∗1(k1, k2) for all combinations of

k1, k2 were computed to check the optimality properties of the computed inputs.
The norm of the x1-component of rk1,k2 := ‖

[
Γ1,hu∗1(k1, k2)

]
x1
‖2Y describes

the distance of the computed discrete solution to a possible optimal continuous
solution. Table 6.2 shows the residuals for k1, k2 = 4, 5, 6.

k1\k2 4 5 6
4 1 0.8 −
5 0.365 0.45 0.388
6 0.277 0.154 0.17

Table 6.2: Matrix of the relative residuals rk1,k2 normalized by scaling with r4,4.

It is notable that the values below the diagonal are much smaller than their
counterparts above the diagonal. This is probably due to a better performance of
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Figure 6.10: The x1-component of the optimized signal u1(k1, k2)∗ for k1 = k2 =
5 (a), intented to force a zero x1-component in the output (b) . The
dotted line in (b) shows the ”uncontrolled“ solution

the optimization algorithm in an overdetermined rather than in an underdeter-
mined system. For the extreme case 24 inputs versus 26 outputs the optimization
algorithm found no satisfiable solution.
For the fullcase the complete discrete input and output spaces Uhk1 and Yhk2

defined by (6.7) are considered. On the basis of Table 6.2 it was decided to
set k1 = 5 and k2 = 4 as the best compromise between low dimensionality and
accuracy. Thus one obtains for the dimension of the input and output spaces
dimUhk1 = 32 · 32 and dimYhk2 = 18 · 16.
Accordingly for a given target state y∗h ∈ Yh, the approximate optimization

Problem 6.4 is defined via: Find u∗ ∈ R32·32, such that

‖y∗h − (y0,h + κ−1
Y M−1

Y Hu∗‖2Y → min

with the i/o map H ∈ R18·16×32·32.
In the first realization the concrete target function y∗h was chosen as y1∗

h =[
[y1∗
h ]Tx1

[y1∗
h ]Tx2

]T :=
[
1 0
]T indepent of t. This choice models a state of an

average x1-velocity of 1 and zero velocity in x2-direction, uniformly distributed
in the observation domain.
Again the Matlab function fminunc was taken to compute a satisfactory

optimal solution vector u1∗, starting with u = 0. The optimality was checked
by computing the continuous system response y1∗ = Γhu1∗.
The result of this optimization is displayed by plotting 6 of the 18 components

of y1∗(t) versus t ∈ [0, 0.1], see Figure 6.12. A further illustration is given by the
velocity vector plot and the streamline plot at time t = 0.1 for the driven cavity,
controlled by the input u1∗, see Figure 6.11. According to the definition of the
output, the chosen components of y1∗(t) represent the averaged in x2-direction
velocity components in the observation domain, measured at the sensor points
indicated in Figure 6.11 (b).
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Figure 6.11: Velocity vector plot (a) and streamline plot (b) of the controlled
Oseen driven cavity flow at time t = 0.1, influenced by the input
signal u1∗, optimized with respect to a uniform velocity distribution
(vx = 1, vy = 0) within the time interval [0, 0.1] in the observation
domain. The arrows in (a) indicate the positions of the extraction
of the output signals belonging to y1∗, which are displayed in Figure
6.12.

Judging by the velocity vector plot in Figure 6.11 the target is obviously
captured. Also the signal responses in Figure 6.12 tend to the defined target
state. Notably are the oscillations at the start, possibly induced by the initial gap
between the target and the actual state. The ocurrence of these fluctuations in
the x2-component, where the gap to the target is much smaller, can be explained
by the velocity coupling via the continuity equation. Having overcome these
sharp oscillations the output stays within a certain proximity to the target. The
still observable deviations are of the same order for both components, but better
visible in the plots for the x2-output due to the different scale for the vertical
axis.
Similar results are obtained with the same procedure but with the reversed

target state y2∗
h :=

[
[y2∗
h ]Tx1

[y2∗
h ]Tx2

]T :=
[
1 0

]T . The plots for this second
optimization, i.e. for the corresponding optimized signal u2∗ and its response
y2∗, are displayed in Figure 6.13 and 6.14.
Compared to the results for y1∗

h the plots in Figure 6.14 show a smoother
behaviour. This is possibly due to the fact, that in the second case the control
acts more directly on the observation domain.
Both optimization cases were set up without further considerations on the

formulation of the optimization problem. Nevertheless the above results back the
approach of using the Oseen equation in combination with discrete i/o mapping
to solve optimal control problems in fluid mechanics. More significant results
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Figure 6.12: 6 components of the signal response y1∗
h . The plots on the left-hand

side show the x1-component of the output at the sensor positions
indicated in Figure 6.11 versus the time t ∈ [0, 0.1]. The right-hand
side displays the corresponding x2-component. The dotted lines
mark the corresponding ”uncontrolled“ outputs.
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Figure 6.13: Velocity vector plot (a) and streamline plot (b) of the controlled
Oseen driven cavity flow at time t = 0.1, influenced by the input
signal u2∗, optimized with respect to a uniform velocity distribution
(vx = 0, vy = 1) within the time interval [0, 0.1] in the observation
domain. The arrows in (a) indicate the positions of the extraction
of the output signals belonging to y2∗, which are displayed in Figure
6.14.

may be obtained by investigating the proper choice of the target funtional. For
example, adding a penalizing term for the input, containing e.g. the norm ‖u‖
of the input, possibly helps to damp the oscillations. Also the dependence of the
optimization on the resolution of the input and output signals requires further
investigation.
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Figure 6.14: 6 components of the signal response y2∗
h . The plots on the left-hand

side show the x1-component of the output at the sensor positions
indicated in Figure 6.11 versus the time t ∈ [0, 0.1]. The right-hand
side displays the corresponding x2-component. The dotted lines
mark the corresponding ”uncontrolled“ outputs.
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7 Summary and Outlook
The key results of this work are connected to the explicit solution (3.32) formula
for the spatially discretized Oseen equations. Treating the solution of the flow
equations as a solution of a DAE establishes a direct relation between the input
and the output for Oseen system with distributed control and observation. The
closed form gives a base for error estimations directly considering the use of
finite dimensional in- and outputs.
A second important implication of the formula concerns the necessary regular-

ity of the right-hand side fh and the control uh appearing in the semidiscretized
state equations. For a general discretization scheme with the corresponding
matrix

E11 := [I −D−1BT [Q+BD−1BT ]−1B]D−1M

the formula requires for the velocity and the pressure solution fh + uh in C[0, T ]
and in C1[0, T ], respectively. If only the velocity component is considered, the
general case of indE11 = 2 already admits the use of wavelets and lower order
finite elements for the discretization of the input. However these regularity
conditions are possibly too strong. Therefore a future task is to determine
conditions for the spatial discretization schemes that ensure a E11 of index 1.
Another open task coming with the DAE theory is the proper treatment of the

starting values. Actually the integration of the spatially discretized Oseen equa-
tions requires a consistent initial value. In the present case of linear equations
with constant coefficients one can check the given initial value for consistency
and if necessary do a correction as e.g. described in [70, p. 309]. This issue
was excluded in the theoretical analysis and circumvented in the practical im-
plementation by using a projection algorithm. For a deeper understanding it
may be worth investigating the choice of the corrected initial values influences
the solution.
The use of the explicit solution formula to establish an i/o map for the dis-

tributed control of the Oseen system is straight forward. Also the numerical
results backed the applicability of this approach. The optimal control of the
spatially discretized Oseen system, however, has to be seen in the larger context
of controlling the corresponding Navier-Stokes equations. As mentioned and il-
lustrated in the introduction the optimal control of Oseen is a subcycle of a loop
aiming at the optimal control of the NSEs.
The mentioned above scheme with the control acting only in the inner iteration

is shown in Figure 7.1 and referred to in the following discussion as Scheme1. A
variant for further investigation may be the coupling of the control directly to
the NSEs and to use the Oseen equations to solve the nonlinear equations in the
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un // NSEs
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Figure 7.1: Scheme1: Optimal control of NSE by Oseen approximation with
control unit in the inner loop

sense of a Newton-scheme. Note that this variation, illustrated in Figure 7.2, is
not linear in the control.

vkn ← vk+1
n

��

un // NSEs → Oseen
(Newton iteration)

//

OO

CT vn
!= y∗

ww

u∗ Controloo

n←n+1

dd

Figure 7.2: Optimal control of NSE by Oseen approximation with control unit
in outer loop

Furthermore Scheme1 has to be checked for efficiency and robustness against
other approaches, like the empirical black box approaches. The term black box
means that the state equations are not analysed but considered as a deterministic
system, delivering a certain output yk for a given input uk. To find an optimum
value u∗ the system response is computed for a finite set of inputs ui, i =
1, . . . , N . The resulting outputs yi are then analysed to identify a possibly
improved uN+1 e.g. by an extrapolation or a genetic algorithm. See Figure 7.3
for an illustration of the principle.
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Figure 7.3: Black box approach for optimal control of a flow problem. Iteration
directed by the control to find uN+1 so that vN+1 matches the target
output y∗

In applications to flow problems often the black box is represented by a flow
solver, solving the posed flow problem numerically. For large scale problems
where a concise analysis is unaffordable this approach still delivers satisfying
results, see e.g [57].
To motivate and to detect the potential of further developments of the here

proposed methods, comparing studies with black box approaches may be an
interesting future task. It is likely that on linear problems the method of linear
i/o mapping performs similarly to e.g. the black box realizations provided by the
Matlab control toolbox [100] or other linear models as e.g. presented in [75].
A more significant comparison, in particular with state-of-the-art nonlinear

model prediction control (NMPC) as discussed e.g. in [2, 12, 13, 63], has to
include an estimation of the competitiveness of Scheme1 with respect to highly
nonlinear flow systems.
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