7 Examples
7.1 Semi-discrete Navier-Stokes equations
7.1.1 Transformation to a more handy form
By scalings and state transforms, we find that the coefficients of the spatially discretized Navier-Stokes equations {λE−A}={λ[M000]−[ABHB0]}∽ where we have used a QR-decomposition: M^{-1/2}B^H=Q\begin{bmatrix}R \\ 0\end{bmatrix} with unitary Q and invertible R in the third step.
7.1.2 Local Characteristic Values
Next we derive the local characteristic as in Theorem 4.1.
We compute the subspaces as defined in (4.5):
Matrix | as the basis of/computed as |
---|---|
T=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix} | \operatorname{kernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix} |
Z=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix} | \operatorname{corange}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix} |
T'=\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix} | \operatorname{cokernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix} |
Z^HAT=0_{n_1} | \begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix} |
V=I_{n_1} | \operatorname{corange}(Z^HAT) = \operatorname{kernel}0_{n_1}^H\phantom{\begin{bmatrix} 0 \\ I_1 \end{bmatrix}} |
Z^HAT'=\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix} | \begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix} |
and derive the quantities as defined in (4.6):
Name | Value | Derived from |
---|---|---|
rank | r=n_1+n_2 | \operatorname{rank}E = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix} |
algebraic part | a=0 | \operatorname{rank}Z^HAT = \operatorname{rank}0_{n_1} |
strangeness | s=n_1 | \operatorname{rank}V^HZ^HAT' = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix} |
differential part | d=n_2 | d=r-s=(n_1 + n_2) - n_1 |
undetermined variables | u=n_1 | u=n-r-a=(n_1+n_2+n_1)-(n_1+n_2)-0 |
vanishing equations | v=0 | v=m-r-a-s=(n_1+n_2+n_1)-(n_1+n_2)-n_1 |
7.1.3 Derivative Array and the Condensed Form
Since the differentiation index of (7.1) is \nu=1, we anticipate for the strangeness index that \mu=1 and consider the derivative array of order \ell =1:
\begin{equation} \left ( \mathcal M_1 , \mathcal N_1 \right ) = \left ( \begin{bmatrix} M & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ A & B^H & M & 0\\ B & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} A & B^H& 0 & 0\\ B & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \right ) , \quad g_1 = \begin{bmatrix} f_1 \\ f_2 \\ \dot f_1 \\ \dot f_2 \end{bmatrix}. \end{equation}