7 Examples

7.1 Semi-discrete Navier-Stokes equations

7.1.1 Transformation to a more handy form

By scalings and state transforms, we find that the coefficients of the spatially discretized Navier-Stokes equations {λEA}={λ[M000][ABHB0]} where we have used a QR-decomposition: M^{-1/2}B^H=Q\begin{bmatrix}R \\ 0\end{bmatrix} with unitary Q and invertible R in the third step.

7.1.2 Local Characteristic Values

Next we derive the local characteristic as in Theorem 4.1.

We compute the subspaces as defined in (4.5):

Matrix as the basis of/computed as
T=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix} \operatorname{kernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}
Z=\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix} \operatorname{corange}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}
T'=\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix} \operatorname{cokernel}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}
Z^HAT=0_{n_1} \begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}
V=I_{n_1} \operatorname{corange}(Z^HAT) = \operatorname{kernel}0_{n_1}^H\phantom{\begin{bmatrix} 0 \\ I_1 \end{bmatrix}}
Z^HAT'=\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix} \begin{bmatrix} 0 \\ 0 \\I_{n_1} \end{bmatrix}^H\begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0\end{bmatrix}\begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix}

and derive the quantities as defined in (4.6):

Name Value Derived from
rank r=n_1+n_2 \operatorname{rank}E = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0\end{bmatrix}
algebraic part a=0 \operatorname{rank}Z^HAT = \operatorname{rank}0_{n_1}
strangeness s=n_1 \operatorname{rank}V^HZ^HAT' = \operatorname{rank}\begin{bmatrix} I_{n_1} & 0_{n_1\times n_2}\end{bmatrix}
differential part d=n_2 d=r-s=(n_1 + n_2) - n_1
undetermined variables u=n_1 u=n-r-a=(n_1+n_2+n_1)-(n_1+n_2)-0
vanishing equations v=0 v=m-r-a-s=(n_1+n_2+n_1)-(n_1+n_2)-n_1

7.1.3 Derivative Array and the Condensed Form

Since the differentiation index of (7.1) is \nu=1, we anticipate for the strangeness index that \mu=1 and consider the derivative array of order \ell =1:

\begin{equation} \left ( \mathcal M_1 , \mathcal N_1 \right ) = \left ( \begin{bmatrix} M & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ A & B^H & M & 0\\ B & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} A & B^H& 0 & 0\\ B & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \right ) , \quad g_1 = \begin{bmatrix} f_1 \\ f_2 \\ \dot f_1 \\ \dot f_2 \end{bmatrix}. \end{equation}